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Abstract—Fully homomorphic encryption (FHE) presents a
promising opportunity to remove privacy barriers in various
scenarios including cloud computing and secure database search,
by enabling computation on encrypted data. However, integrating
FHE with real-world applications remains challenging due to its
significant computational overhead. In the FHE scheme, Number
Theoretic Transform (NTT) consumes the primary computing
resources and has great potential for acceleration.

For the first time, we present a photonic NTT accelerator,
PhotonNTT, with high energy efficiency and parallelism to address
the above challenge. Our approach involves formulating the NTT
into matrix-vector multiplication (MVM) operations and mapping
the data flow into parallel photonic MVM units. A dedicated
data mapping scheme is proposed to introduce free spectral
range (FSR) and distributed RAM design into the system, which
enables a high bit-wise parallelism level. The system’s reliability is
validated through the Monte-Carlo BER analysis. The experimen-
tal evaluation shows that the proposed architecture outperforms
SOTA CiM-based NTT accelerators with an improvement of 50x
in throughput and 63x improvement in energy efficiency.

I. INTRODUCTION

With the growing awareness of the importance attributed to
data privacy and integrity, there has been an increasing focus
on privacy-preserving computing paradigms. Fully homomor-
phic encryption (FHE) is a form of encryption that allows
computations to be performed in an encrypted form without
access to the secret key. This ensures the confidentiality of
sensitive information, even when processed on an untrusted
server, thereby paving the way for its adoption in domains such
as finance, healthcare, and national security scenarios [1], [2].

Nevertheless, the practicality of FHE remains limited for
most applications due to its substantial overhead, encompassing
computation time and memory usage, particularly in instances
where low-latency and real-time processing are crucial. Even
with a highly optimized FHE library, applications incur a
computation time increase of approximately 5-6 orders of
magnitude when operated encryptedly [3]. Moreover, employ-
ing an FHE-encrypted scheme for a simple neural network
application like MNIST would necessitate approximately 120x
more memory [4]. Consequently, there is an urgent need for
performance enhancements and data movement optimizations
to enable the practical implementation of FHE schemes.

Within FHE schemes, the Number Theoretic Transform
(NTT) assumes a crucial role in polynomial multiplication
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and accounts for a significant portion of computing resources
throughout the entire FHE process. For instance, it constitutes
51% of the execution time of ciphertext multiplication and
55% of the HE ResNet-50 inference time [5], [6]. Multiple
hardware acceleration platforms, including FPGA, ASIC and
Compute-in-Memory (CiM), have been proposed to address this
challenge. However, the acceleration ratio is still limited.

Optical domain-specific accelerators have attracted signifi-
cant attention due to their superb high bandwidth, high paral-
lelism, and low latency. Several optical accelerators have been
proposed for neural network applications, including CNNs [7],
[8], SNN [9] and transformer-based models [10], which have
been meticulously optimized. In fact, they exhibit remarkable
performance for a wide range of applications that crave high
throughput, bringing significant potential to NTT acceleration.

For the first time, we present a photonic accelerator for NTT,
namely PhotonNTT, which possesses both energy efficiency
and real-time capabilities. In essence, we employ a microring
(MR) crossbar array as a fundamental functional unit for large-
scale MVM operations. To elevate the system’s performance,
we incorporate a bit-slicing scheme that exploits free spectral
range (FSR) parallelism. Furthermore, a distributed RAM de-
sign is integrated to mitigate the substantial overhead associated
with data movement. We conducted a comprehensive evaluation
of the system’s throughput and energy efficiency, revealing
a remarkable improvement of 50x and 63x, respectively,
compared to SOTA CiM-based NTT accelerators. Additionally,
we conducted an exploration of the bit-error rate (BER) to
validate the system’s reliability.

II. BACKGROUND AND RELATED WORKS

A. Number Theoretic Transform (NTT)

As a generalization of FFT, NTT is defined on integer
operation in a finite field by modulo ¢. For a polyno-
mial a = Z?;Ol a; X', the n-point NTT is defined as a; =
Z;.:(} w'*Jaj, where w is a primitive n-th root of unity
w™ = 1 mod ¢, and the term w"*? represents twiddle factors.
To multiply two polynomials a and s, we first convert them
into the NTT form, and then only point-wise multiplications
and inverse NTT (INTT) are required, i.e. b = INTT(a - ).
This significantly reduces the overall time complexity.

A common way to implement NTT is to utilize the Divide-
and-Conquer principle as FFT, which is widely known as
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Fig. 1: System schematic

butterfly optimizations. The Cooley-Turkey and Gentleman-
Sande algorithms reduce the complexity of NTT from O(N?)
to O(N log N). Another approach is to map the twiddle factors
into a matrix and perform Matrix-Vector Multiplication (MVM)
operations, which is adopted in PhotoNTT, as the inherent
parallelism of optics can enhance system performance while
minimizing data movement overhead in this context.

B. NTT Accelerators

Nejatollahi er al. [11] employs in-memory bit-wise op-
erations in RRAM to implement Gentleman-Sande butterfly
and Shift-Add-based reduction algorithms, which is the first
RRAM-based NTT accelerator. Though their utilization of an
unfolded dataflow structure achieves substantial throughput
with a high density of RRAM cells, the acceleration ratios
remain to be polished. Park er al. [12] propose a VMM-based
RRAM NTT accelerator that employs a modified Montgomery
reduction algorithm to convert the results instead of using FFT-
like algorithms to improve the execution speed. Unfortunately,
their design only supports polynomial orders up to 1k because
they cannot reprogram the RRAM arrays to load larger twiddle
factor matrices, which is expensive and time-consuming. Li et
al. [13] propose MeNTT with bit-serial modular addition, sub-
traction, and multiplication using 6T-SRAM arrays. Although
this approach can operate n/2 butterflies in parallel with the
SRAM arrays, the FFT-like algorithm still requires logon serial
execution stages that impede the speed of NTT.

In addition to CiM accelerators, there exist NTT implemen-
tations based on ASIC and FPGA. Banerjee et al. [14] propose
a reconfigurable cryptographic processor featuring a modular
arithmetic core where each polynomial is split among 4 single-
port RAMs to reduce the area overhead of storing polynomials.
Song et al. [15] construct a three-stage configurable NTT core
that balances local storage and global routing to achieve a
nearly optimal trade-off between latency and size. Except for
ASIC-based design, Zhang et al. [16] propose a five-stage
pipeline butterfly arithmetic unit to reduce critical path delay
and employs a ping-pong memory access scheme that enables
reading and writing two coefficients in 1 cycle by using two
BRAMs in an FPGA platform. Other works [?], [17] propose
customized data flow and optimized memory access strategy to
accelerate NTT applications. However, these approaches suffer
from frequent data movement between processing elements and
memory, thereby impeding performance and energy efficiency.
Additionally, their applicability is confined to small polynomial
orders and limited parameter configurations, preventing them
from FHE application.

C. Domain-specific Photonic Accelerator

Given the current state of general computation cores, i.e.
CPUs and GPUs, nearing the limits of Moore’s Law, there
is a promising opportunity to develop domain-specific pho-
tonic accelerators that harness the inherent advantages of
high bandwidth, massive parallelism, and low latency offered
by optics. Optical modulators, for example, exhibit operation
speeds reaching tens of GHz while maintaining high energy
efficiency. Furthermore, by leveraging Dense Wavelength Divi-
sion Multiplexing (DWDM), the typical bandwidth of optical
telecommunication C-band can extend to several THz, enabling
higher throughput and increased computational capacity in
accelerators. Optical matrix multiplication accelerators, pre-
dominantly in the form of optical neural network accelerators
[18], have garnered significant attention. Foe example, Shen
et al. proposed to accelerate neural networks [19] with MZI-
arrays. Subsequently, ONNs using silicon weight banks are
proposed to implement CNNs [20], [21]. To broaden the scope
of acceleration scenarios, optical General Matrix Multiplication
(GEMM) accelerators also emerge as a viable choice [22], [23].

In particular, FHE schemes requires NTT with immense
parameters, resulting in a substantial computational intensity.
In line with the growing trend of privacy-preserving scenarios,
the development of real-time photonic NTT accelerators holds
great promise.

III. ARCHITECTURE

The overall architecture schematic of PhotonNTT, depicted
in Figure 1, consists of a global buffer and multiple photonic
acceleration tiles. The global buffer serves as the storage for
both input and output from different tiles. Each tile comprises
four Photonic Processing Elements (PPEs) that perform ()NTT
operations in parallel. The intermediate MVM results obtained
from PPEs will be post-processed by digital circuits and then
buffered in the tile register for next-step operation.

Each PPE comprises a 1616 MR crossbar array for MVM
execution. A dedicated FSR-based parallelism, as depicted in
Fig 2b, is adopted to patch several bits into one batch as
input. This bit-wise parallelism, together with the original row-
wise and column-wise parallelism, contributes to a significant
performance enhancement.

A. Dot-product in MR

In an MR modulator, only the light with the proper wave-
length could transmit to the drop port. The resonant wavelength
is determined by the radius of the ring and could be further
modulated using thermal or electrical tuning. This provides a
way to conduct optical dot products at a low cost. By tuning the
resonant wavelength finely, the output in the drop port could be
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Fig. 2: (a,b) MR modulator as dot-product unit (with FSR-parallelism);
(c) distributed RAM as local buffer

modulated at 4 or even 8-bit. In this case, we strike a balance
between precision, speed, and device variation, opting for a 4-
bit configuration. This is yet to be enough for NTT algorithms
which typically require 16-bit or higher numbers. A bit-slicing
algorithm is induced to address the issue in Sec III-D.

To leverage the expansive bandwidth of MR to its full
potential, we incorporate the free spectral range (FSR) paral-
lelism. As shown in the transmission pattern of MR in Fig.2b,
light at various wavelengths could transmit through the drop
port, whose 2intervals are identical, namely FSR, decided by
AN = 27rn . Consequently, parallel operations of multiple
input bits within a single MR become possible, constituting a
cohesive unit referred to as a patch.

FSR parallelism suffers from the fact that the weight of
the multiplications should remain identical, which hinders its
adoption in other accelerators. However, within the mapping
scheme of NTT, wherein twiddle factors stay fixed, FSR
parallelism operates effectively.
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Fig. 3: Photonic Processing Element (PPE)
B. Photonic MVM Unit

Fig 3 illustrates the operational principle of PPE. The Laser
pump generates a broadband primitive signal, which is subse-
quently modulated by the Microcomb. The modulated signal is
then directed to the wave shaper, where the intensity of each
individual wavelength is fine-tuned. Then this signal would be
multicast to various rows of the MR array, which serves as the
dot-product unit. Addition naturally occurs when the multitude
of multiplication outcomes gather in PDs, thereby constituting
the complete MVM function unit.

Efforts are made to facilitate the incorporation of FSR par-
allelism. Extra photodiodes (PDs) are required at each column
for wavelength de-multiplexing. To reduce the energy and area
overhead of ADC usage, different columns use a MUX for
ADC sharing, which transfers data into the digital domain.

C. Data Flow, Mapping and the distributed RAM

In PhotonNTT, we devote to the full utilization of parallelism
for NTT operation in the photonic platform. Hence, the MVM
NTT mapping is adopted rather than the butterfly optimization,
which prevents exclusive data movement and complex routing
in a photonic implementation.

The NTT operation could be identified as

ao 1 1 1 ao
an 1 wt w1 a

a n—1 (n—1)2

an—1 1 w e w An—1

For twiddle factors, which remain stationary throughout the
operation, pre-calculation makes it available for storage in the
distributed RAM. To enable the large-polynomial-order NTT, it
is necessary to partition the workload into smaller tiles. Here,
the n x n twiddle factor matrix is much larger than the total
size of PPE at p X p. Therefore, we tile this matrix into [%]2
pieces and map one tile to the PPE each time.

To alleviate the pressure on memory access brought by
distinguished twiddle factors, a distributed RAM is designed
for each MR to store temporary twiddle factors as illustrated
in Fig 2c. This allows each MR to access one entry of the
distributed RAM to retrieve the value of the twiddle factor,
rather than accessing the global buffer.

On the other hand, the large polynomial coefficients are
multicast to the MR crossbar array bit by bit, due to a
reliability concern. With the assistance of the bit-slicing scheme
mentioned later in Sec III-D, intermediate results get aggregated
and prepared for next-step computation. Specifically, with the
dedicated FSR-parallelism, a reduced tiling scheme can fulfill
the requirement of multi-bit input.

D. Bit-slicing FSR-based Parallelism
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Fig. 4: FSR-enabled Bit-slicing Scheme

As described in Fig 4, with the FSR-parallelism level at 4,
the 16-bit input is sliced to 4-bit input batches and fed into
the array simultaneously, where multiplications with twiddle
factor occur. Subsequently, after results get demultiplexed and
reach the PD, the FSR-enabled bit-slicing scheme significantly
reduces system complexity and latency, which is detailed in
Algorithm 1. ‘

In the first stage, every 8-bit partial product 2;5:0 aj[o]wff_{l]
from each column’s PD is sampled by the 8-bit ADC. Then
the output of different channels in one column is shifted
by 1, 2, and 3 respectively, and gets summed, which gets
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Zjlio aj[3_0]w?7>:]4] in each column. Then the result is left
shifted by 4 .to ac}d with Z}io aj[3_o}w€3ijo] in another col-
umn. After iteration across all the columns, the result of
Z;io ajiz—ow"*7 is aggregated. Then the input changes to
a;r7—4) as the next input batch. After another 3 input batches,
the output is aggregated to Z j=0 AW w07,

Algorithm 1 Bit-slicing Shift-Add Method

Input: An integer tg = 2550 j[4k+m] Wi[dn+3:4n], Where o is
from ADC output, and k,n G 0,1,..7}.
Output: An integer t3 =

CL][31 0]Wi[31:0]-
t1<—0 t2<—0 t3<—0 FéR

1:
2: for k=0, k<8, k++ do
3: for n=0, n<8, n++ do
FSR—1
4: tr Yoo (( Z Ajak+m) Wifant3:4n]) << M)
j=0
5: t1 Z 0 Qj[ak+FSR—1:4k)|Wi[an+3:4n)
6: to < ta + (tl << 4n)
7: end for
8: t3 < t3 + (t2 << 4k)
9: end for
Return t3

A. Evaluation Setup

As depicted in Table I, the MR array has a default size of
16x 16 with 4-bit modulation precision. The functionality of the
MR array is evaluated using the photonic device modeling and
simulation environment BOSIM [24]. Montgomery reduction
unit, shifter, and adder are simulated and verified by verilog
code and synthesized using Synopsys Design Compiler with
40nm FreePDK. Memory subsystems were simulated using
the FN-CACTI tool [25], which is the latest extension of the
CACTI [26] cache modeling tool for FinFET and recent CMOS
devices.

We perform the evaluation of the latency, energy consump-
tion, throughput, and area efficiency of PhotonNTT under
polynomial orders at 256 and 1024, and compare the result with
SOTA CiM, ASIC, and FPGA NTT accelerators. As proof of
scalability, we evaluate the energy and latency of PhotonNTT
under larger polynomial orders and compare them with CPU
and RRAM-based accelerators.

TABLE I: Accelerator Configurations for n=256

E. Montgomery Reduction Unit

After aggregation, the result may end with its bit-width larger
than the original size. In this case, modular reduction is required
to reduce the number to a proper size for next-step computation.

In order to use the MVM result as an operand, modifica-
tion of the general modular reduction algorithm is necessary.
This involves adapting the Montgomery reduction algorithm,
which is capable of handling operands larger than two-integer
multiplication. The resulting modified Montgomery reduction
algorithm [12] is presented in Algorithm 2. To transfer the
twiddle factors to the Montgomery space, we pre-multiply them
by n~! and r, where w*9 = n~1w?*r mod ¢. To simplify
the logic computations, we chose r = n?2*, where k is a power
of 2. This choice allows modulo r to be selected by the lower
bits of the integer, and division by r to be performed using
right shift operations.

Algorithm 2 Montgomery Reduction Algorithm for (D)NTT

Input An integer T' = Zl 0 @iWi, where a; and w; € Z,,w =
wn " r mod ¢

Output: An integer ¢ = Tnr~
Tr~! mod ¢ for INTT.

Ymod ¢ for NTIT, or t =

I: »=n22F, where 287! < ¢ < 2F
2. ¢ = (rr~' —1) /q, where rr~' mod ¢ =1
3: if NTT then
4: T+ T <<logyn
5. end if
6: m < ¢ (T mod r) mod r; z + (T + mq)/r
7. if z>qthent < 2z —q
8: else t + 2
9: end if
Return t

IV. EXPERIMENTAL EVALUATION

In this section, we conduct comparisons between PhotonNTT
and other SOTA accelerators, as well as design space explo-
ration on different device and hardware parameter settings.
Moreover, the BER analysis ensures system reliability.

Power Area
Component Parameter Spec W) (mm2)
Number 256
MR Array [27] Size 16x16 0.066 26.21
Frequency 200 MHz
Laser [28] Number 16 0.16 1.92
Wﬁ/ggzﬁ,i de Number 1 per chip - 2
SOA Number 256 1.28 435%x10°°
Frequency 10GHz
PD [29] Number 64 per array 0.16 0.16
Resolution 8 bits
ADC [30] Number 1024 15.16 2.92
Frequency 10GHz
Resolution 4 bits
DAC [31] Number 256256 7.86 4.59
Frequency 200MHz
Mont- Unit Number 256 0.43 0.36
&S%ﬁ; Number 256 2.18 0.65
Total 27.3 38.81

B. Latency Comparison

Our proposed design exhibits significantly lower latency
compared to CiM NTT accelerators. This is because the in-
memory computing paradigm typically involves bit-serial mul-
tiplication, which is inefficient and time-consuming. In contrast,
our design incorporates a direct analog matrix-vector multipli-
cation method that reduces the latency of the multiplication of
coefficients and twiddle factors. Moreover, the photonic MVM
unit enables operation at an ultra-high frequency of 10GHz,
outperforming all existing electronic-based accelerators. This
reduces the latency by at least one order of magnitude. Addi-
tionally, our MVM-based dataflow obviates the latency of logan
serial execution stages in FFT-like NTT algorithms [11], [13],
enabling fully parallel exploitation of NTT operations. As a
result, our design surpasses other SOTA accelerators by 2 to 4
orders of magnitude in terms of overall latency and throughput.

C. Energy & Area Efficiency

As presented in Table II, PhotonNTT reaches the highest
area efficiency (throughput-per-area-per-energy) compared to
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TABLE II: Comparison with other NTT accelerators

. - Frequency Latency Energy Throughput Energy Efficiency Area Efficiency
Design Platform — n  Bitwidth =y, (ns) mJ)  (kNTT/s) (&NTT/smJ)  (kNTT/s/mm>/nJ)
. 256 74.6 23937 72
Our Work Photonic 1024 14 10K 5.6 11933 178571.4 149 0366
256 280 145 3570 24.6 85.1
RMNTT[12]  RRAM 554 14 400 1100 1160 909 0.783 27
256 23K 144 42 0.291 0.81
MeNTT[13]  SRAM 55, 14 151 29K 720 35 0.0486 0.135
BP-NTT [32] SRAM 256 16 3.8K 61.9K 34 258.6 7.6 59.4
256 68.7K 2.6K 0.212 139
CryptoPIM [11] RRAM 1024 16 909 831 50K 553.3 0111 073
Sapphire [33] ASIC 256 14 64 20.1K 236.3 49.7 0.21 0.593
LEIA [15] ASIC 256 4 267 600 44.1 1667 37.87 21.3
other existing designs. Thanks to the highly parallel photonic others s o tser
MVM unit, a favorable trade-off between performance and won Others
energy efficiency is achieved. Albeit RM-NTT [12] exhibits o a7 % 4
5%
higher throughput compared to SRAM-based designs due to S " D“C>
the use of MVM-based dataflow instead of FFT-like dataflow, }2 s
the working frequency of RRAM-based accelerators is typically £ ac | *** 209 5
. . . > DAC B
at tens of megahertz, which is much lower than that of photonic o o g
c =
w =1

accelerators, resulting in a significantly lower energy area
efficiency correspondingly.

D. Scalability
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For polynomial orders greater than 1K, the workload is
partitioned with proper PPE reuse. The twiddle factor matrix
is partitioned and reloaded from the distributed RAM for NTT
implementation with larger polynomial orders. This enables a
considerable scalability of the PhotonNTT, which supports up
to 128K polynomials.

In comparison with CPU and RRAM-based accelerators,
PhotoNTT achieves significant improvements in energy effi-
ciency with 3 to 7 orders of magnitude for different polynomial
orders. Although this advantage slightly degrades with the
increase of polynomial order due to the latency and energy
overhead associated with reloading and partitioning the twiddle
factor matrix, there is still a considerable superiority when the
polynomial order continues growing.

1.3e+02

Energy Efficiency
S

100 1

E. Area and Energy Breakdown

The power consumption of the system is primarily dominated
by AD conversions (ADC and DAC), which suggests the great

Microring

Fig. 6: Area and energy breakdown

potential of the photonic system. With an optimized dataflow
mapping, chances are that energy efficiency and footprint could
be further enhanced.

On the other hand, the MR crossbar occupies the primary
footprint. Considering the outstanding area efficiency of the
PhotonNTT, we argue that it is worth reaching a higher speedup
with a relatively larger area of the system.

F. DSE on Cell Precision and Array Size
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Fig. 7: Throughput efficiency and area variation with cell precision
and array size

In this study, we investigate the variation of energy efficiency
at different cell precision and array sizes. As illustrated in
Figure 7, the trend suggests that the performance could benefit
from the utilization of high-precision MRs. However, this bene-
fit becomes marginal when it is greater than 4-bit. Additionally,
as the bit precision increases and the array size decreases, the
total area may increase due to the need for more arrays and
ADCs to accommodate the twiddle factor matrix. Besides, a
higher precision MR array is usually harder to manufacture and
fabricate. Therefore, we select a 4-bit 16x16 MR array in our
design to reach a good trade-off between fabrication feasibility
and energy efficiency.

G. Bit Error Rate (BER)

In NTT applications, accuracy is rather important since there
is no error-tolerating mechanism. Therefore, it is necessary to
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validate the precision of the accelerator.

In photonNTT, several factors that might affect the BER are
taken into consideration. Environmental temperature fluctuation
as well as the thermal crosstalk is abstractly concluded as the
thermal variation v;. The difference between on and off states
can also be indicated by the quality factor (Q-factor @) of
the MR, which measures both the sharpness of resonance and
the dissipation of energy. After MAC is finished within each
MR unit, the results are accumulated in the PD, where errors
also accumulate size-wise. The dark current of the PD I; may
further increase the chance of errors. By the way, the MR array
size s is also considered. In table III, we conducted a detailed
survey on how these parameters would influence the BER of
the PhotonNTT, and the robustness is found guaranteed.

TABLE III: BER exploration

Q| 3500 6000
s La 1 10 100 1 10 100
v

0.01 / / / / / /

16 x 16 0.02 / / / / / /

0.03 / / / / / /

0.01 / / / / / /

32 x 32 0.02 / / / / / /
003 | Ll1le-16  1.1le-16  133e-15 | 1.1le-16 1.1le-16  1.33e-15

0.01 / / / / / /

64 X 64 0.02 / / / / / /
0.03 | 3.81e-09 3.84e-09 8.00e-09 | 3.81e-09 3.83e-09 7.99-09

0.01 / / / / / /
128 x 128 | 0.02 | 412e-10 4.16e-10  1.05¢-09 | 4.11e-10  4.15e-10  1.04e-09
0.03 | 3.09¢-05 3.10e-05 3.76e-05 | 3.09e-05 3.10e-05 3.75e-05

It is worth noting that under the default setting, there is only
neglectable BER, validating the robustness and error tolerance
of the system. Even if the system scales up, chances are
that the BER is confined to a reasonable range within the
photonic system. Due to the overhead of OE conversion, the
scale of crossbar is limited, which promises practicability even
regarding fabrication variation. Furthermore, the BER result of
photonNTT is much more reasonable compared to that of CiM-
based NTT accelerators, mainly because the MR operates at a
higher bit-width, contributing to a smaller device scale.

V. CONCLUSION

For the first time, a photonic NTT accelerator PhotonNTT
is proposed with ultra-high energy efficiency and considerable
reliability. By mapping the NTT workload parallel into the MR
crossbar, the inherent massive parallelism and high operating
frequency of PhotoNTT enable an ultra-high throughput and
energy efficiency. Additionally, the distributed RAM design
facilitates scalable NTT operations. The practicality and relia-
bility of our design are verified by a detailed BER analysis. The
evaluation shows that the proposed architecture outperforms
existing NTT accelerators based on ASIC and CiM, achieving
an improvement of at least three orders of magnitude in
area efficiency. PhotonNTT proves the outstanding potential of
photonic accelerator in terms of NTT applications, which may
contribute to real-time FHE hardware implementations.

ACKNOWLEDGEMENT

This work is supported by the Guangzhou-HKUST(GZ) Joint
Funding Program (No. 2023A03J0013).

(1]
(2]
(3]

[4]
[5]
(6]
(7]
(8]
(91
[10]

[11]

[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]

[21]

[22]

[23]

[24]
[25]
[26]
[27]
[28]

[29]

[30]

[31]
(32]

[33]

REFERENCES

J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, 2012.

J. H. Cheon et al., “Homomorphic encryption for arithmetic of approxi-
mate numbers,” in ASTACRYPT 2017. Springer, 2017, pp. 409-437.
J.-W. Lee et al., “Privacy-preserving machine learning with fully homo-
morphic encryption for deep neural network,” IEEE Access, vol. 10, pp.
30039-30054, 2022.

R. Gilad-Bachrach et al., “Cryptonets: Applying neural networks to
encrypted data with high throughput and accuracy,” in ICML, 2016.

S. S. Roy et al., “Fpga-based high-performance parallel architecture for
homomorphic computing on encrypted data,” in HPCA, 2019.

B. Reagen et al., “Cheetah: Optimizing and accelerating homomorphic
encryption for private inference,” in HPCA. IEEE, 2021, pp. 26-39.
X. Xu et al., “11 TOPS photonic convolutional accelerator for optical
neural networks,” vol. 589, no. 7840, pp. 44-51.

H. Bagherian et al., “On-chip optical convolutional neural networks,”
arXiv preprint arXiv:1808.03303, 2018.

J. Feldmann et al., “All-optical spiking neurosynaptic networks with self-
learning capabilities,” vol. 569, no. 7755, pp. 208-214.

S. Afifi et al., “Tron: Transformer neural network acceleration with non-
coherent silicon photonics,” in GLSVLSI, 2023, p. 15-21.

H. Nejatollahi er al., “CryptoPIM: In-memory acceleration for lattice-
based cryptographic hardware,” in 2020 57th ACM/IEEE Design Automa-
tion Conference (DAC), pp. 1-6.

Y. Park et al., “RM-NTT: An RRAM-based compute-in-memory number
theoretic transform accelerator,” vol. 8, no. 2, pp. 93-101.

D. Li et al,, “MeNTT: A compact and efficient processing-in-memory
number theoretic transform (NTT) accelerator,” vol. 30, no. 5.

U. Banerjee et al., “2.3 an energy-efficient configurable lattice cryptog-
raphy processor for the quantum-secure internet of things,” in ISSCC.
S. Song et al., “LEIA: A 2.05mm2 140mw lattice encryption instruction
accelerator in 40nm CMOS,” in CICC, pp. 1-4.

C. Zhang et al., “Towards efficient hardware implementation of NTT for
kyber on FPGAs,” in 2021 ISCAS, pp. 1-5.

R. Agrawal et al., “Fab: An fpga-based accelerator for bootstrappable
fully homomorphic encryption,” in HPCA’23, pp. 882-895.

Y. Liu et al., “PHANES: ReRAM-based photonic accelerator for deep
neural networks,” in DAC ’22, pp. 103-108.

Y. Shen et al., “Deep learning with coherent nanophotonic circuits,”
Nature photonics, vol. 11, no. 7, pp. 441-446, 2017.

A. N. Tait et al., “Neuromorphic photonic networks using silicon photonic
weight banks,” Scientific reports, vol. 7, no. 1, pp. 1-10, 2017.

V. Bangari et al., “Digital electronics and analog photonics for convolu-
tional neural networks (deap-cnns),” IEEE Journal of Selected Topics in
Quantum Electronics, vol. 26, no. 1, pp. 1-13, 2019.

N. Youngblood, “Coherent photonic crossbar arrays for large-scale
matrix-matrix multiplication,” IEEE Journal of Selected Topics in Quan-
tum Electronics, 2022.

L. Yang et al., “On-chip optical matrix-vector multiplier,” in Optics and
Photonics for Information Processing Vii, vol. 8855. SPIE, 2013, pp.
100-104.

X. Chen et al., “Modeling and analysis of optical modulators based on
free-carrier plasma dispersion effect,” TCAD, pp. 977-990, 2019.

D. P. Ravipati et al., “FN-CACTI: Advanced CACTI for FinFET and
NC-FinFET technologies,” vol. 30, no. 3, pp. 339-352.

R. Balasubramonian et al., “CACTI 7: New tools for interconnect
exploration in innovative off-chip memories,” vol. 14, no. 2.

R. Dubé-Demers et al., “Ultrafast pulse-amplitude modulation with a
femtojoule silicon photonic modulator,” vol. 3, no. 6, pp. 622-627.

A. Descos et al., “Heterogeneously integrated III-v/si distributed bragg
reflector laser with adiabatic coupling,” in ECOC, pp. 1-3.

P. Ma et al., “Plasmonically enhanced graphene photodetector featuring
100 gbit/s data reception, high responsivity, and compact size,” vol. 6,
no. 1, pp. 154-161.

J. Liu et al., “A 10gs/s 8b 25fj/c-s 2850um2 two-step time-domain ADC
using delay-tracking pipelined-SAR TDC with 500fs time step in 14nm
CMOS technology,” in ISSCC, vol. 65, pp. 160-162.

H. Eslahi et al., “Ultra compact and linear 4-bit digital-to-analog converter
in 22nm FDSOI technology,” in ISCAS, pp. 2778-2781.

J. Zhang et al., “BP-NTT: Fast and compact in-SRAM number theoretic
transform with bit-parallel modular multiplication.”

U. Banerjee et al., “Sapphire: A configurable crypto-processor for post-
quantum lattice-based protocols,” pp. 17-61.

Authorized licensed use limited to: Alipay (Hangzhou) Information Technology Co. Ltd.. Downloaded on October 18,2024 at 03:13:36 UTC from IEEE Xplore. Restrictions apply.



