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ABSTRACT
In the realm of neural network computation, optical neural network

accelerators (ONNs) have emerged as a promising solution, leverag-

ing the inherent speed and parallelism of optical systems. Despite

their potential, current ONN designs often fall short due to ineffi-

cient data movement and reliance on traditional electronics-based

dataflows.

Herein, we introduce a pioneering approach to ONN implemen-

tation that incorporates the Number Theoretical Transform (NTT),

known for its effective divide-and-conquer strategy, non-floating-

point operations, and multi-level parallelism. This integration sig-

nificantly reduces data mapping costs for Convolutional Neural

Networks (CNNs), making it particularly well-suited for optical con-

volution neural networks (OCNNs) with considerable performance

and efficiency escalation.

For the first time, our proposed methodology realizes the ben-

efits of NTT in ONN. We employ an innovatively designed opti-

cal butterfly structure that facilitates real-time NTT computation

while occupying a minimal footprint. The resulting system, termed

NEOCNN, showcases a remarkable throughput capability of up to

61 Tera Operations per Second (TOPs) and demonstrates a power
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efficiency of 9.6 TOPs/Watt, all while maintaining reliable inference

accuracy.

This work not only represents a stride toward more efficient

ONNs but also sets a precedent for future research in combining

Number Theoretical Transforms with optical computing paradigms.
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1 INTRODUCTION
Neural networks (NNs) have revolutionized a multitude of fields,

enabling advancements in autonomous driving, style transferring,

medical diagnosis, and more, through their sophisticated pattern

recognition and decision-making capabilities. Pioneering applica-

tions such as ChatGPT[2] and DALL-E[1] underscore the trans-

formative impact of these technologies. However, as traditional

computational scaling laws wane, e.g. the breakdown of Dennard

scaling[12] and the stagnation of Moore’s law[32], the substantial

computational demands of neural network training and inference

pose a challenge for real-time deployment of NNs.

352

https://doi.org/10.1145/3650200.3656609
https://doi.org/10.1145/3650200.3656609
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650200.3656609&domain=pdf&date_stamp=2024-06-03


ICS ’24, June 04–07, 2024, Kyoto, Japan Xianbin Li

To address this, dedicated hardware accelerators like FPGAs

[8, 41], ASICs[37], and Compute-in-Memory (CIM) implementa-

tions [23, 35] have been developed to optimize performance and

reduce power consumption. Among these, silicon photonics stands

out, enabling abundant computing resources with an ultra-high

working frequency compared to traditional electronic ones[53]. The

unique high bandwidth and low latency, together with its compati-

bility with CMOS processes, make it extremely advantageous for

integrated electro-optical co-design and fabrication[6, 42]. Recent

advances in photonics, including ones that are designed for the

acceleration of CNNs[7], SNNs[16] and even transformer-based

models[3], have demonstrated the potential for terabyte (TB)-[46]

or even petabyte (PB)-[10] level computational performance, indi-

cating a promising path forward for meeting the increasing com-

putational demands of neural networks.

Despite these advancements, optical neural networks (ONNs),

especially optical convolutional neural networks (OCNNs), still

face inefficiencies due to the data mapping tailored for electronic

processors. The high operating frequency of optical devices en-

ables outstanding inference speeds but also introduces significant

data movement and electro-optical conversion bandwidth overlap,

leading to stress on memory access and a failure to reach the perfor-

mance upper bound when integrated into a computer architecture.

Conventional dataflow approaches like input-stationary and

weight-stationary are intuitive but lack optimization opportunities

in an optical system. While row-stationary dataflow shows promise

in CiM-based accelerators[11], it remains less effective for optical

systems.

A promising approach to overcoming these challenges in OCNNs

is the use of Fast Fourier Transform (FFT)-based convolution accel-

eration. Compared to the traditional spatial mapping scheme, the

overall memory accesses are reduced from 𝑂 (𝑁 2) to 𝑂 (𝑁𝑙𝑜𝑔𝑁 )
within a single convolution operation, which greatly alleviates

the heavy memory burden. However, the phase modulation of the

Mach-Zehnder Interferometer (MZI) devices is greatly impacted

by the thermal crosstalk and may lead to a significant accuracy

degradation[29]. Moreover, the huge footprint of MZI devices con-

fines it from higher integration.

Number Theoretical Transform (NTT), which involves only in-

teger operations instead of the floating-point complex computa-

tions in FFT, offers a compelling alternative. Extensively adopted

in the expedition of polynomial multiplication in post-quantum-

cryptography (PQC) schemes, especially fully homomorphic en-

cryption (FHE) schemes[51], NTT has demonstrated its effective-

ness in the acceleration of the convolution process of CNN[18, 45]

as well. Eliminating the need for complex-real number conversions,

the simplicity of NTT reduces overall transformation and memory

overhead. Furthermore, the intrinsic multiple-parallelism and its

simplified data traffic and mapping make NTT-based convolution

acceleration remarkably suitable for optical implementation.

In this paper, we present an NTT-enabled optical convolution

neural network accelerator, NEOCNN, and the contribution of the

paper is outlined as follows:

• For the first time, we incorporate NTT into the acceleration

of convolution in an optical system for reduced computa-

tional resource consumption and optimized dataflow, which

consequently improves system flexibility, scalability, and

accuracy.

• We propose a photonic butterfly structure and adopt it with

an NTT mesh to achieve on-the-fly NTT transformation.

With the optimization of the inverse design technique, the

butterfly, comprised of nanophotonic devices, substantially

reduces the hardware cost and footprint of NEOCNN.

• We carry out a detailed analysis of the potential crosstalk and

loss factors, and verify the NEOCNNdesignwith outstanding

inference accuracy results.

• NEOCNN reaches up to 61 Tera Operations per Second

(TOPs) in throughput and 9.6 TOPS/W in power efficiency

for VGG-16 inference, which surpasses both SOTA electrical

accelerator and ONN.

In the remaining sections, the paper is organized as follows.

Section II provides detailed background on both Optical neural

network (ONN) acceleration and the application of number theo-

retic transform (NTT). Section III thoroughly illustrates the system
design of NEOCNN. Section IV presents a comprehensive analysis

of potential crosstalk and loss factors. Finally, Section V concludes

NEOCNN’s superior performance.

2 PRELIMINARY
2.1 Optical Neural Network Accelerators
Integrated photonics, leveraging its high bandwidth, high paral-

lelism, and low latency, has emerged as a powerful platform for ac-

celerating artificial intelligence applications, including CNNs[7, 46],

transformer-based models[3], etc. General Matrix Multiplication

accelerators are another approach to fully utilize the versatility of

photonic computing cores with the ability of generalization[47].

In the realm of optical neural networks (ONNs), there are two

prevalent architectures: Mach-Zehnder Interferometer (MZI)-based

and MicroRing (MR)-based systems. The matrix-vector multiplica-

tion (MVM) process is explored as follows, which is a cornerstone

computation in neural networks, as implemented by these two

types of ONNs.

MZI-based ONN: The MZI-based ONN utilizes a device called

a Mach-Zehnder Interferometer (MZI) for modulating light. An

MZI is a silicon-based optical modulator with two inputs and two

outputs. By adjusting the optical phase in its arms, an MZI can

act as a 2 × 2 unitary matrix operator, which can manipulate the

amplitude and phase of light passing through it. The neural network

inference process, particularly the matrix multiplication operation,

can be decomposed into three key steps based on the Singular

Value Decomposition (SVD) and the parametrization of unitary

matrices. These steps involve unitary and diagonal matrices being

represented by a sequence of MZI modulators, the operation of

which is depicted in Figure 1. After training, the neural network’s

weights are encoded into phase shifts within the MZIs for inference

tasks.

MR-based ONN: As depicted in figure 2a, the MR encompasses a

ringwaveguide, closely coupledwith an input and a drop buswaveg-

uide. The ring waveguide resonates only when the path length of

the resonator cavity is identical or close to the integer multiple of
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the input wavelength. This resonance happens when the circum-

ference of the ring is an integer multiple of the wavelength of the

incoming light. During resonance, light is directed from the input

waveguide into the ring and then to the drop waveguide. By adjust-

ing the resonant frequency through thermal or electrical means,

we can control the intensity of light, denoted by the transmission

rate 𝑘 , that passes through. This intensity modulation serves as

the ’weight’ in MVM operations. An MVM is thus performed by

modulating multiple light signals in a silicon ’weight bank’, where

multiple dot-products are carried out simultaneously and the differ-

ential operation of port ’Through’ and ’Drop’ enables sign-number

computation. These vector products are then combined to execute

the convolutional or MLP layers of the network.

ThroughInput

Drop

𝑘 

(a) MicroRing Resonator
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(b) Transmission spectrum of MR
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(c) Schematic of silicon weightbanks

Figure 2: Working principle of MR-based ONN

While optical neural networks (ONNs) have shown great promise

in advancing artificial intelligence, they are not without their chal-

lenges. For instance, MR-based networks struggle with precision

in modulation and the challenge of handling heavy weight loads.

Zhang et al. [50] made significant progress by developing MR

synapses capable of beyond 9-bit precision. Yet, there is still con-

siderable overhead regarding the dithering signal as well as the

intensive OE conversion. Recent work by Xu et al. [46] takes great
advantage of the parallelisms in MR and achieves an 11.3 TOPs

performance in theory.

On the other hand, MZI-based networks face issues with the

complex methods required for matrix decomposition along with its

inefficiency. To address this problem, Liu et al. have explored more

efficient decomposition methods[28], such as sine-cosine decompo-

sition, to reduce the size of these networks.

Additionally, alternative approaches such as FFT (Fast Fourier

Transform)-based convolution[17, 36] are expected to further min-

imize the network footprint. The FFT-based optical convolution

neural networks (OCNN) have been proposed to leverage the re-

duced time complexity of FFT convolution[15], and demonstrate

outstanding performance and energy efficiency compared to tradi-

tional SVD-based MZI networks[40]. As illustrated in Figure 3, the

FFT-based networks could reduce the number of basic computing

units from 𝑂 (𝑁 2) to 𝑂 (𝑁𝑙𝑜𝑔𝑁 ) during decomposition, where 𝑁

represents the size of the input data. These computing units are

depicted as black boxes in the figure 3. In this context, 2 × 2 optical
modulator, conventionally MZI, is adapted to the networks for the

passive optical signal transform. Whereas, in FFT-based ONNs, the

thermal crosstalk that exists commonly would cause a significant

precision degradation in the phase modulation of MZI modulators,

which is not desirable. Moreover, the size of MZI devices remains a

barrier to achieving higher levels of integration compared to MR

devices.

(a) SVD-based (b) FFT-based

Figure 3: Footprint comparison of basic transform unit on
both topologies: (a) Unitary transform; (b) FFT transform.

2.2 Number Theoretical Transform
In lattice-based cryptosystems, the Number Theoretic Transform

(NTT) plays a pivotal role in accelerating polynomial multiplica-

tions, significantly reducing the time complexity of these operations.

Other than FFT, which is also adopted in the acceleration of convo-

lution computation, NTT is performed within the integer domain

rather than the complex domain, intrinsically avoiding the float-

ing point computation overhead and the according errors. Such

improvements are particularly crucial in the context of Fully Homo-

morphic Encryption (FHE) schemes, where polynomial multiplica-

tions account for a significant portion of computational resources.

For instance, in the CKKS encryption scheme, as implemented in

Microsoft SEAL, an open-source cryptography library, polynomial

multiplication accounts for 54.01% of the total processing time[38].

Similar to the Discrete Fourier Transform (DFT), NTT can bene-

fit from a divide-and-conquer approach, utilizing algorithms such

as Cooley-Tukey (CT) and Gentleman-Sande (GS) for efficient trans-

formation computation. Compared to the complicated complex

number arithmetic of FFT, a fast NTT algorithm could leverage

the divide-and-conquer strategy to transform the computational

complexity of discrete convolutions from 𝑂 (𝑁 2) to 𝑂 (𝑁 log𝑁 )
while requiring only integer operations. This significantly reduces

the computation overhead. By decomposing a problem into smaller
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instances of the same problem and then combining the solutions of

these instances, NTT efficiently computes the convolution of two

sequences. In the context of convolution, NTT performs the trans-

form without the detailed frequency domain information compared

to the FFT, which is not required during the entire process. The effi-

ciency gain is particularly advantageous for processing large-scale

data, where direct computation methods would be prohibitively

slow or even impossible.

Table 1: Analysis of convolution schemes: Transform cost,
Operation cost, and memory requirement

Winograd FFT NTT

Domain

Transform Cost
2(𝐾 +𝑀 − 1)2 3𝑁 2

log𝑁 3

4
𝑁 2

log𝑁

Operation Cost (𝐾 +𝑀 − 1)2 3𝑁 2 𝑁 2

Memory

Requirement
2(𝐾 +𝑀 − 1)2 4𝑁 2

2𝑁 2

Precision Loss No Yes No

NTT outperforms other schemes in terms of operation cost and

memory requirement[18], including FFT, Winograd, and Spatial, as

detailed in Table 1. Assume a 2-D convolution process, where an

𝐼 × 𝐼 input feature map is convolved with a 𝐾 × 𝐾 weight kernel,

producing a𝑀 ×𝑀 output. The transform length of both FFT and

NTT are set as 𝑁 = 𝐿 + 𝐾 − 1.
To address the challenges of applying FHE in practical scenarios,

researchers have proposed various NTT acceleration methods tai-

lored to different hardware platforms. These include CPUs, GPUs,

FPGAs, ASICs, and Compute-in-Memory (CIM) implementations.

Nejatollahi et al.[33] propose the first RRAM-based NTT acceler-

ator using in-memory bit-wise operations, while Park et al.[35]
introduce a VMM-based RRAM NTT accelerator with a modified

Montgomery reduction algorithm. However, their design only sup-

ports polynomial orders up to 1k due to the inability to reprogram

RRAM arrays for larger twiddle factor matrices. Li et al.[23] propose
MeNTT using 6T-SRAM arrays, which can operate 𝑛/2 butterflies
in parallel but still require 𝑙𝑜𝑔2𝑛 serial execution stages. In addi-

tion to CiM accelerators, there exist NTT implementations based

on ASIC and FPGA. Banerjee et al.[8] propose a reconfigurable

cryptographic processor, while Song et al.[41] construct a three-
stage configurable NTT core. Zhang et al.[49] propose a five-stage
pipeline butterfly arithmetic unit and employ a ping-pong mem-

ory access scheme on an FPGA platform. Other works[5, 51] pro-

pose customized data flow and optimized memory access strategies.

However, most of these solutions must navigate a delicate balance

between the flexibility and performance of the accelerators. This

trade-off arises because pursuing maximum computational perfor-

mance often requires platform/application-specific customization,

which can reduce the generality and adaptability of the acceleration

scheme.

Moreover, the multiple intrinsic parallelism of NTT could be

utilized with optical implementations. Li et al. proposed to acceler-

ate NTT with photonic implementation[24], whereas traditional

MVM-based NTT is applied and the algorithmic overhead restricts

it from reaching a higher performance bound when scaling up.

Moreover, the reduction unit inside grapples with the inefficient

general algorithm.

3 NEOCNN
3.1 NTT-based convolution and Fermat number
The Discrete Fourier Transform (DFT) is widely used across vari-

ous engineering disciplines due to its ability to transform discrete

signals between time and frequency domains. Similarly, The Num-

ber Theoretic Transform (NTT) extends the principles of DFT to

the integer domain. The NTT replaces the complex exponential

factors of the DFT, denoted as 𝑒−2𝜋𝑖𝑘/𝑁 , with integer values. Specif-

ically, these integers are roots of unity within the quotient ring

Z/𝑞Z, where 𝑞 is a prime number congruent to 1 modulo 2𝑛. Here,

𝑤 is selected as the 𝑛-th primitive root of unity that satisfies the

congruence𝑤𝑛 ≡ 1 (mod 𝑞).
Consider a polynomial 𝑎(𝑋 ) = ∑𝑛−1

𝑖=0 𝑎𝑖𝑋
𝑖
. The NTT computes

an 𝑛-point transform of 𝑎 as follows:

𝑎𝑖 =

𝑛−1∑︁
𝑗=0

𝑎 𝑗𝑤
𝑖 𝑗

for 0 ≤ 𝑖 < 𝑛 (1)

In this formula,𝑤𝑖 𝑗 are the twiddle factors—integral powers of

𝑤—and serve a role analogous to the exponential factors in the

DFT.

NTT-based convolution is akin to polynomial multiplication,

which is detailed in Algorithm 1.

Algorithm 1 NTT-based Convolution

Input: Vectors 𝑎(·), 𝑏 (·) ∈ Z/𝑞Z to be convolved

Constants: Modulus 𝑞, vector length 𝑛, and primitive 𝑛-th root𝑤

Output: Convolution result 𝑐 (·)
Function Convolution(𝑎(·), 𝑏 (·), 𝑛, 𝑞,𝑤 ):

Padding(𝑎); Padding(𝑏);
𝐴(·) ← NTT(𝑎(·), 𝑞,𝑤);
𝐵(·) ← NTT(𝑏 (·), 𝑞,𝑤);

𝐶 (·) ← HadProd(𝐴(·), 𝐵(·));
𝑐 (·) ← INTT(𝐶 (·), 𝑞,𝑤);

return 𝑐 (·);

The concept of one-dimensional convolution extends to two

dimensions as expressed in equation 2:

𝐻 (𝑚,𝑛) = NTT_2D(ℎ( 𝑗, 𝑘)) =
𝑛−1∑︁
𝑗=0

𝑛−1∑︁
𝑘=0

ℎ( 𝑗, 𝑘)𝑤𝑚𝑗+𝑛𝑘 (2)

3.2 Fermat number theoretic transform
In Fully Homomorphic Encryption (FHE), a sufficiently large mod-

ulus 𝑞 is crucial for maintaining security. The Residue Number

System (RNS) is commonly employed to manage multiple smaller
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moduli, thereby simplifying the computational complexity. Con-

versely, in NTT-based convolution, selecting a single optimal 𝑞 can

streamline both the transform and modular reduction processes,

improving efficiency with specialized algorithms.

Particularly advantageous is the choice of a Fermat prime as the

modulus𝑞. A Fermat prime is of the form 𝐹𝑛 = 2
2
𝑛 +1, and for𝑛 ≤ 4,

each 𝐹𝑛 is a prime number with desirable computational properties.

For example, 𝐹4 = 65537 is a prime that supports efficient NTT

operations since it allows the use of primitive roots like 𝑤 = 4

and requires only simple bit-wise operations for addition, negation,

and reduction. This is because multiplication by 2
𝑘
and reduction

modulo 𝐹𝑛 can be implementedwith basic bit shifts and subtractions

when 𝑞 is a Fermat prime, as demonstrated in Agarwal and Burrus’s

work on fast convolution algorithms[4].

In the specific context of CNNs, where parameters are typically

represented with less than 16 bits—often quantized to 8 bits or

lower—the Fermat prime 𝐹4 = 65537 is an exceptional fit as the

modulus. The bit width 𝐵 = 17 required for representing 𝐹4 aligns

seamlessly with the precision of these networks, striking a delicate

balance between computational efficiency and adequate precision

of the networks.

3.3 Overlap-and-Add (OaA) method
In CNN architectures, the disparity between the relatively large

input feature map and the much smaller kernel size can lead to

computational inefficiencies when utilizing balanced NTT-based

convolutions. The conventional approach, detailed in Algorithm 1,

often necessitates transforming the small kernel matrix into a large-

point NTT form. This scaling mismatch can result in significant

performance degradation. To address this issue and integrate NTT

more effectively into CNN models, the Overlap-and-Add (OaA)

technique is employed[34]. This method partitions extended input

sequences into smaller segments and then overlaps the convolution

outcomes, as described in Algorithm 2.

Algorithm 2 NTT-Based Convolution With OaA

Input: Input Matrix𝑀 (𝐼 × 𝐼 ×𝐶in), Weight𝑊 (𝐾 ×𝐾 ×𝐶in ×𝐶out)
Output: 𝑅((𝐼 + 𝐾 − 1) × (𝐼 + 𝐾 − 1) ×𝐶out)

for 𝑧 ← 1 to 𝐶out do
for 𝑘 ← 1 to 𝐶in do

𝑊̃ (𝑘, 𝑧) ← 𝑁𝑇𝑇 (𝑊 (𝑘, 𝑧));
end

for (𝑖, 𝑗) ← (1, 1) to (𝐼 , 𝐼 ) do
𝑃 (𝑖, 𝑗) ← 0;

for 𝑘 ← 1 to 𝐶in do
𝑀̃ (𝑖, 𝑗, 𝑘) ← NTT(𝑀 (𝑖, 𝑗, 𝑘));

𝑃 (𝑖, 𝑗) ← 𝑃 (𝑖, 𝑗) + HadProd(𝑀̃ (𝑖, 𝑗, 𝑘),𝑊̃ (𝑘, 𝑧));
end

𝑃 (𝑖, 𝑗) ← INTT(𝑃 (𝑖, 𝑗));
𝑅(𝑖, 𝑗, 𝑧) ← OaA(𝑃 (𝑚,𝑛) |𝑖, 𝑗

𝑚=𝑖−1,𝑛=𝑗−1);
end

end
return 𝑅;

In this method, the input feature map of size 𝐼 × 𝐼 is divided
into smaller tiles of size 𝐿 × 𝐿. Each tile 𝑀̃ (𝑖, 𝑗, 𝑘), along with the

kernel𝑊 , is transformed into the NTT domain. The Hadamard

product (denoted as Had_Prod in the pseudo-code) is an element-

wise multiplication between the transformed tiles and weights. The

resulting partial products 𝑃 (𝑖, 𝑗) are then inversely transformed

back to the spatial domain to obtain 𝑃 (𝑖, 𝑗). These are overlapped
and added together to accumulate the final output 𝑅(𝑖, 𝑗, 𝑧). The
convolution is performed progressively, processing all the input

tiles to produce the convolved result.

3.4 Inverse-design Nanoswitch and butterfly
Though modulators like MicroRing (MR) or Mach-Zechder Inter-

ferometer (MZI) have been widely applied in previous ONN im-

plementations and have proven their effectiveness and efficiency,

they suffer from their huge footprint of several hundreds of square

micrometers. The nanophotonic devices, which function mainly

with their digitized meta-structures at a sub-wavelength scale[19],

demonstrate their potential in place of these modulators. These dig-

itized meta-structured nanophotonic components have succeeded

in serving as optical processors to achieve bar state, cross state, and

unitary transmission[31], which is functionally similar to an MZI

whereas thousands of times smaller in footprint.

One of the most significant approaches to designing nanopho-

tonic devices is by inverse design, which inversely optimizes opti-

cal devices in terms of shape or topology according to the optical

responses of the physical structure. These inverse-designed opti-

cal components have been adopted in various scenarios, includ-

ing programmable nanophotonic processors, quantum photonic

circuits, and photonic neural network circuits. Though a signifi-

cant footprint reduction is achieved with its adoption in previous

ONNs[48, 52], it is found hard to scale up due to the significant

inverse-design overhead and thus only naive networks are pre-

sented. Constrained by its tiny physical size and the limited design

space, previous designs[48, 52] only design networks with naive

models and suffer from inaccurate modulation when the system

scales up and the error accumulates. In Fig. 3b, both meshes are

composed of 2 × 2 MZIs modulators, which could be replaced by

nanophotonic devices using inverse design. As is seen in Fig.4b, the

nanoswitch is similar to MZI topologically and both act as 2 × 2
optical modulators.

The basic butterfly modules, illustrated in Fig. 4a are responsi-

ble for (I)NTT transform in electronic accelerators. In NEOCNN,

optical modulators, specifically the nanoswitches, replace them

to pursue higher working frequency and lower energy consump-

tion. In summary, the transform will be conducted passively, which

means that no extra energy consumption is required except for

the signal input, and rapidly, which means that the inference is

processed at light speed without any delay. The nanoswitch, based

on a standard silicon-on-insulator (SOI) platform, consists of two

layers: a 220-nm-thick silicon layer and a silica cladding layer for

protection. As depicted in Fig. 4b, the nanoswitch consists of two in-

put/out arms and a digitized meta-structure formed by specifically

distributed nanoholes. The distribution is obtained by a topology

optimization algorithm as outlined in Alg. 3.
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Figure 4: (a) NTT butterfly; (b) Optical inver-design
nanoswitch

Algorithm 3 Adjoint Method for Inverse Design in Nanophotonics

Input: Initial design 𝜖 (0) , objective function 𝐹 ,
constraint equations𝑀 , convergence tolerance 𝛿 ,

maximum iterations 𝑁max

Output: Optimized design 𝜖∗

Procedure AdjointMethod(𝐹,𝑀, 𝜖 (0) , 𝛿, 𝑁max):

maximize

𝜖
𝐹 [𝜓 (x), 𝜖 (x)] subject to 𝑀 [𝜓 (x), 𝜖 (x)] = 0

𝜖 (𝑘 ) ← 𝜖 (0) ; 𝑘 ← 0 ; 𝐹
old
← 0 ;

repeat
𝜓 (𝑘 ) ← ForwardSolve(𝜖 (𝑘 )) ;

𝛿𝐹
𝛿𝜓
← AdjointSourceTerm(𝐹,𝜓 (𝑘 )) ;

𝜆 (𝑘 ) ← AdjointSolve( 𝛿𝐹
𝛿𝜓
, 𝑀,𝜓 (𝑘 )) ;

𝛿𝐹
𝛿𝜖
← 𝜕𝐹

𝜕𝜖 − 𝜆
(𝑘 ) · 𝛿𝑀

𝛿𝜖
;

𝜖 (𝑘+1) ← UpdateDesign(𝛿𝐹
𝛿𝜖
, 𝜖 (𝑘 )) ;

𝐹new ← EvaluateObjective(𝐹,𝜓 (𝑘 ) , 𝜖 (𝑘 )) ;
𝑘 ← 𝑘 + 1 ;

until |𝐹new − 𝐹old | < 𝛿 or 𝑘 ≥ 𝑁max

𝜖∗ ← 𝜖 (𝑘 ) ;
return 𝜖∗ ;

In NEOCNN, the digitized meta-structure of nanoswitch has a

region of 2.4 × 6 𝜇𝑚2
, with the grid scale at 32 × 80. Each grid

contains a possible nanohole with a diameter of 60𝑛𝑚 that could be

etched during fabrication according to the topology optimization

outcome.

The s-parameter matrix can be used to describe the behavior of

an optical component, which summarizes the inner relationship of

input and output as 𝑂1×2 = 𝐼1×2 · s2×2. In the context of an optical

butterfly, a nanoswitch has a s-matrix of

s =
1

√
1 + 22𝑛

[
1 1

2
𝑛 −1

]
, (𝑛 = 1, 2, 3, 4) (3)

, which could be implemented with a single nanoswitch. One of

the possible nanohole distributions in NEOCNN is demonstrated

in Fig. 3 when 𝑛 = 1.

Unlike the design in [52], each optical processor operates dif-

ferently and has to be designed individually, the nanoswitches in

the optical NTT mesh are configured to modulate with a limited

number of different 𝑛, which greatly reduces the design overhead.

Moreover, the generic mesh design in NEOCNN enables the infer-

ence of various network models, rather than having the weight

fixed after fabrication.

Additionally, the application of the Fermat number as the mod-

ulo 𝑞 enables the simplification of the transfer matrix in the NTT

process, which could make sure that the error accumulation is

minimized and chances for error could be eliminated.

3.5 Optical NTT Mesh
NTT could be implemented with cascaded optical butterflies, the

arithmetic function of which is depicted in Fig. 4a. Compared to

electrical NTT modules that recursively utilize the butterfly, the

optical butterfly mesh operates in a feed-forward manner, allow-

ing on-the-fly NTT and avoiding the repetitive shuttling of data

inherent to recursive approaches.

Each node within the mesh is constructed using a pre-coded

nanoswitch, which directs the incoming light to the appropriate

output ports. These nanoswitches are the core components that

enable the reconfigurability of the optical paths and, consequently,

the arithmetic operations of the NTT. The feed-forward nature of

the mesh enables the NTT transform to be conducted at the speed

of light and a frequency of 10 GHz or even higher. The passivity

of photonic components is another significant advantage, as they

require no energy to maintain the state of light passing through

them. This characteristic of the mesh results in a process free from

energy consumption during NTT operations. Moreover, the scale

of the mesh is designed to obviate the need for additional energy

compensation.

An 8-point radix-2 NTT with a Fermat number as modulo 𝑞 =

𝐹𝑛 is illustrated in Figure 5 as an example. This straightforward

implementation of the Fast NTT algorithm consists of 𝑙𝑜𝑔(𝑛) stages,
each containing 𝑛/2 butterfly modules.
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Figure 5: Nanoswitch mesh for NTT/INTT

3.6 Hardware Architecture and Dataflow
As depicted in Figure 6, the NEOCNN comprises several parts, in-

cluding the signal generation module, the NTT mesh, the reduction

module, the Hadamard product module, and the memory attached.

The system’s modular nature allows for flexibility in handling vari-

ous convolution sizes and enables scalability for larger networks

or datasets.

The input signal is created by a laser which emits light that en-

codes information. This information-laden light is then directed

through the NTT mesh, which transforms the signal into the NTT
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Figure 6: System Overview

domain for efficient convolution operations. The NTT mesh func-

tions passively, meaning it relies on pre-coded configurations that

correspond to mathematical operations necessary for the transfor-

mation, thus eliminating the need for constant data movement and

reducing the computational load on the system’s memory.

The Hadamard product module then performs an element-wise

multiplication. This is done using a silicon weight bank that im-

prints the network’s learned parameters onto the optical signal,

akin to the design proposed in MR-based ONNs.

3.7 Functional Modules
TheNEOCNN’s computational efficiency is greatly enhanced through

the use of several specialized modules. Notably, the Hadamard prod-

uct, the dot-product operation unit in the network, is facilitated

by silicon weight banks—technology traditionally associated with

MR-based systems. Precision in this operation is paramount and is

achieved by adjusting the MR modulator’s oscillation wavelength

and fine-tuning input signals, which was previously discussed in

Section 2.1.

With the multiple data reuse patterns in CNN, the free spectral

range (FSR)-parallelism could be applied in this Hadamard product

unit as well. As depicted in the transmission spectrum in Fig. 2b, the

tuning of MR can operate on multiple wavelengths simultaneously

with their interval at an integer multiple of the FSR. This approach

cleverly utilizes wavelength-division-multiplexing (WDM) to en-

hance system parallelism—potentially increasing throughput by a

factor of four or more.

The reduction unit of the NEOCNN, which is integral for simpli-

fying the information post-transformation, is implemented using

electronic circuits. This choice is strategic; by employing Fermat

numbers as the moduli, the complexity of the reduction process

is significantly diminished. Unlike the general Number Theoretic

Transform (NTT) scheme, this method necessitates only simple bit

operations. As a result, the footprint and energy consumption of

the reduction unit is minimal—rendering it virtually cost-free and

occupying an inconsequential portion of the system’s resources.

This design choice underscores the NEOCNN’s commitment to

efficiency and scalability.

Table 2: Photonic components parameters

Component Parameter Spec† Power (W) Area (mm2)

O*

Nanoswitch

Mesh

Number 32

/ 0.12Size 8×4
Ins Loss -0.8dB

Crosstalk -20dB

MR

weight

bank[13]

Number 32

< 0.01 0.20Size 16

Precision 4-bit

Laser[43] Number 16×4 0.64 3.00

PD[30]

Frequency 10GHz

1.28 1.28

Number 512

E*

Reduction

Unit
Number 64 < 0.01 0.01

Shifter

Adder
Number 64 0.54 0.16

OE*

ADC[26]

Resolution 8 bits

3.79 1.46

Number 16 × 32

DAC[14]

Resolution 4 bits

0.12 0.07

Number 32×32

Total 6.37 6.68

† 16-point NTT, 32 meshes, FSR_level = 4

∗ O: Optical components; E: Electronic components; OE: OE interface

4 SIMULATION AND EXPERIMENTAL
VERIFICATION

In this section, a detailed performance analysis is conducted through

power, latency, and throughput. Comparison is performed against

SOTA OCNN, FPGA-based CNN accelerators, and ASIC. Besides,

the crosstalk and loss, which may significantly impact the accuracy

of CNN inference, have also been thoroughly analyzed.

4.1 Evaluation Setup
As depicted in Table 2, the NEOCNN architecture is composed of

32 nanoswtich meshes, each mesh intricately designed to execute a

16-point NTT. MR weight banks are responsible for the Hadamard

product in the NTT domain.

The functionality of optical components is evaluated through the

photonic device modeling and simulation environment BOSIM[9],

which provides a comprehensive platform to simulate the behavior

of photonic circuits and guarantees that the NEOCNN’s compo-

nents adhere to their expected performance specifications. The

systematic synthesis analysis is performed using a heterogeneous

system simulation platform JADE [22], which enables the evalua-

tion of the NEOCNN in a structured manner, taking into account

various system-level considerations such as power, latency, and

throughput.
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Table 3: Comparison with other NTT accelerators

Design Platform Method Number of PEs Bitwidth
Frequency
(MHz) Model Latency

(ms)
Throughput

(GOPS)
Power Efficiency

(GOPS/W)

Ours Photonic NTT 32 8 10k

VGG-16

GoogLeNet

1.95
0.70

61020
15096

9579.3
2369.9

[46] Photonic Spatial 1 8 62.9k / / 11300 NA

[18]

FPGA

Alveo U50

NTT 2048 8 / 21 200

VGG-16

GoogLeNet

13.9

3.58

2859.5

990.3

110.0

38.1

[45]

FPGA

VX485t

NTT / 16 150 VGG-16 150.2 264.6 /

[27]

FPGA

ZCU 102

Winograd 2345 8 ∼ 16 214

VGG-16

Yolo-v2

19.67

13.9

3120.3

805.6

NA

[20]

FPGA

XC7VX980T

Spatial 3395 8 / 16

150

100

VGG-16

ResNet-101

NA

1000

600

69.64

48.43

[21]

FPGA

XCVC1902

Spatial 128 8 1333 VGG-16 16.99 10952 303.4

[25] ASIC Spatial 16 16 1000 NA NA 1056 1771.8

[39] RRAM Spatial 8 8 1000 NA NA 1707 25.9

4.2 Overall Performance Comparison
The performance of NEOCNN is evaluated by comparing it with

other state-of-the-art (SOTA) CNN accelerators. Table 3 provides

a comprehensive comparison in terms of key metrics such as pro-

cessing elements (PEs), bit-width, operating frequency, models sup-

ported, latency, throughput, and power efficiency.

NEOCNN surpasses SOTA electrical accelerators in terms of

throughput, power efficiency, and latency comprehensively, achiev-

ing an unparalleled throughput of 61𝑇𝑂𝑃𝑆 and power efficiency

of 9.6 𝑇𝑂𝑃𝑆/𝑊 . Thanks to the ultra-high speed of optical devices,

NEOCNN could minimize the inference efficiency. Notably, the area

is 62% smaller with the adoption of the nanoswitch, which is not

explicitly indicated in the table.

The NTT-based convolution method also contributes to the flex-

ibility of NEOCNN, which enables the inference of popular models

such as VGG-16 and GoogLeNet. Though the flexibility is still lim-

ited compared to that of the electrical accelerators (throughput

degradation in GoogLeNet), this flexibility of the network provides

great convenience in system scalability compared to other ONNs

[46, 52] that only fit with dedicated models.

In conclusion, NEOCNN demonstrates exceptional performance

characteristics in comparison to other state-of-the-art accelerators.

The cutting-edge photonic technology, combined with the notable

operating frequency, enables both high throughput and low la-

tency, which are critical for real-time CNN applications. Moreover,

the remarkable power efficiency as well as the flexibility of the

NEOCNN is indicative of its potential for deployment in extremely

computation-intensive scenarios.

4.3 Energy and Area Breakdown
The energy and area breakdown for NEOCNN provides insights

into the efficiency and spatial distribution of its components, as

depicted in Figure 7.

ADC
59.3%

Others

PD
20.0%

DAC
1.9%

Shifter Adder

8.5%

Laser

10.0%

Energy Breakdown

Laser

47.6%

DAC

1.1%

MR weight bank

3.2%

ADC23.2%

Shifter Adder

2.5%

Nanoswitch Mesh

1.9%

PD

20.3%

Others

Area Breakdown

Figure 7: Energy and Area Breakdown for NEOCNN

NEOCNN’s design primarily focuses on minimizing the energy

consumption associated with optical-electrical (O-E) and electrical-

optical (E-O) conversions, which are traditionally the main con-

tributors to power usage in optical convolutional neural network

(OCNN) systems. By taking advantage of the passivity and the mul-

tiple parallelism, NEOCNN achieves a considerable improvement

in energy efficiency over previous OCNN architectures.

In regards to the area, the NEOCNN’s layout is optimized through

the integration of a nanoswitch mesh, which constitutes the largest

portion of the area. This mesh replaces the bulkier Mach-Zehnder

Interferometer (MZI) arrays found in traditional designs, leading to

a more compact and area-efficient footprint without compromising

performance.

As for the energy breakdown, photodetectors (PD) and analog-to-

digital converters (ADC) are the major consumers, each accounting

for more than 20% of the total energy. The energy usage of lasers

and digital-to-analog converters (DAC) is remarkably low, indicat-

ing optimized conversion efficiency. The shifter adder and other

miscellaneous components represent minor energy expenditures

within the system.
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Figure 8: Monte-Carlo analysis of SNR’s influence on the NTT/FFT inference

4.4 Analysis of Noise, Crosstalk, and Error
Compared to the traditional spatial convolution computing paradigms,

either NTT-based or FFT-based convolution methods necessitate a

heightened computational precision due to the analog nature of the

optical accelerator. This precision is critical, as any error during the

inference of the transform can lead to substantially incorrect con-

volution results. Thus, a comprehensive analysis of noise, crosstalk,

and error is completed on the accuracy of the NEOCNN.

Signal-to-Noise Ratio (SNR): As the main computing com-

ponent of the whole system, the nanoswitch is configured to a

4-bit modulation by default. This modest bit precision is inten-

tional, allowing for a higher tolerance to modulation imperfections

and noise. As depicted in Figure 8, the SNR for NTT-based con-

volution accuracy begins to degrade at approximately 32dB. This

performance is notably superior to that of the FFT-based method,

which experiences degradation at 58dB under the same hardware

conditions.

The primary source of inference noise in ONNs is the thermal

noise, a byproduct of intense on-chip electro/thermal modulation.

NEOCNN, in contrast to conventional OCNN systems, requires

real-time modulation only in a small fraction of its core computa-

tion unit, specifically in the Hadamard product. This design choice

contributes to a lower noise inference environment for NEOCNN,

which boasts a reasonable SNR requirement even when compared

to conventional OCNNs with SNRs as low as 30dB [29].

Crosstalk: Crosstalk effects have been thoroughly investigated.

Because of the integer arithmetic nature of NTT operations, the

theoretic crosstalk upper bound could be deducted given certain pa-

rameter settings. In NEOCNN’s default setting, the crosstalk upper

bound of NTT-based convolution is approximately −27.1𝑑𝐵. As a
comparison, FFT-based convolution exhibits a theoretical crosstalk

level of around −66.4dB.
AdvancedMZImodulators can achieve crosstalk as low as−60dB[44],

yet the system-wide crosstalk for ONNs should be limited to be-

tween −20dB and −30dB. This range accounts for the cumulative

crosstalk introduced by each modulation event, which necessitates

a more stringent crosstalk requirement. NEOCNN sidesteps many

of these concerns with its pre-coded NTT inference and absence of

EO conversion, leading to simpler nanoswitch fabrication. Through

the application of isolation and optimization techniques, NEOCNN

operates effectively below the crosstalk threshold.

Loss: Optical loss is another critical factor affecting OCNN accu-

racy and is rigorously analyzed as shown in Figure 9. Employing a

4-layer CNN (comprising 2 convolutional layers and 2 MLPs) tested

on the MNIST dataset, the system’s accuracy was evaluated under

various crosstalk and loss conditions. NEOCNN demonstrates a

high degree of error tolerance due to its relaxed parameter settings.

Even with an optical loss as high as −0.4dB — a highly improbable

scenario—the system’s inference accuracy remains impressively

stable at 92.4%.
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Figure 9: MNIST inference accuracy under various loss and
SNR settings.

360



ICS ’24, June 04–07, 2024, Kyoto, Japan Xianbin Li

We also provide a thorough investigation into the influence of

all potential noise factors on the inference accuracy of various net-

work models. The models included are LeNet-5, AlexNet, VGG-16,

DenseNet, and MobileNet. Each model was subjected to a consis-

tent experiment setup, which involved training under default loss

conditions with an added crosstalk and noise setting, to simulate

realistic operational environments.

The models were trained with a batch size of 640 and for a total of

10 epochs. The accuracy results, presented in Table 4, demonstrate

that the performance across different architectures is relatively

stable, thereby underscoring the robustness of NEOCNN.

Table 4: Accuracy of models

LeNet-5 AlexNet VGG-16 DenseNet MobileNet

NEOCNN 93.85% 92.75% 93.87% 94.26% 91.13%

GPU 94.25% 95.72% 95.37% 95.64% 92.26%

5 CONCLUSION
In conclusion, the NEOCNN framework pioneers the integration of

NTT into optical convolutional neural network accelerators, herald-

ing a significant leap in computational efficiency for ONNs. The

novel photonic butterfly structure, in conjunction with an NTT

mesh, realizes on-the-fly NTT transformations that drastically re-

duce both computational resource consumption and physical hard-

ware footprint. Our rigorous analysis demonstrates the NEOCNN’s

resilience against potential crosstalk and loss factors, with the sys-

tem showing outstanding inference accuracy.

The NEOCNN achieves a groundbreaking throughput of 61 Tera

Operations per Second (TOPs) while maintaining an impressive

power efficiency of 9.6 TOPs/Watt during VGG-16 inference tasks.

These figures not only surpass state-of-the-art electronic accelera-

tors but also advance the capabilities of existing ONN models. This

work sets a new benchmark for future research in optical comput-

ing and showcases the transformative potential of merging number

theoretical transforms with optical computing paradigms for neural

network acceleration.
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