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Abstract
Recent advances in the architecture design for photonic ac-
celerators have demonstrated great promise to accelerate
deep neural network (DNN) applications, and also allude
to the essential collaboration of the electronic subsystems
for efficient logic arithmetic and memory access. However,
available tools to design and evaluate photonic accelerators
usually neglect the cross-stack effects or low-level details
in real-world scenarios, ranging from programming-stack
inefficiency to electronic peripheral implementation com-
plexity. This frustrating fact makes it difficult to holistically
estimate the performance metrics of a practical photonic-
electronic collaborative computing system. In addition, until
now, no toolchain can provide programmable, hardware-
reconfigurable, and end-to-end rapid verification for pho-
tonic accelerators.
Here we present FIONA, a Full-stack Infrastructure for

Optical Neural Accelerator, which comprises a photonic-
electronic co-simulation framework for multi-level design
space exploration (DSE), and a transferable hardware pro-
totyping template for physical verification. Specifically, the
co-simulation framework consists of a functional simulator
at the instruction set architecture (ISA) level to agilely ver-
ify the programming software stack and a register-transfer
level (RTL) cycle-accurate simulator to precisely profile the
overall system. We also demonstrate LightRocket as a case
study of the FIONA toolchain to show the full workflow
of designing a Turing-complete photonic accelerator sys-
tem that supports arbitrary DNN workloads and on-chip
training. The toolchain is open-sourced and available at
https://github.com/hkust-fiona/.

Keywords: Photonic Accelerator, Full-stack Implement, Sim-
ulation, Transferable Prototyping, Design Space Exploration

1 Introduction
As Moore’s law slows down, computing systems must pivot
towards more powerful computational capabilities and more
rational architectures to enable continuous performance
growth. Recent years have seen a trend that photonic-based
processing units are promising to perform vector operations
faster with higher energy efficiency than their electronic
counterparts, while the optimal architecture of the photonic
accelerator is yet to be determined.

With the emergence of research at either the architecture
level or the device level, we observe a design philosophy
shift: from inference-only to supporting hardware-aware
training, from accelerating only a single task to supporting
multiple tasks of different DNN workloads. In other words,
†Both authors contributed equally to this work.
∗Corresponding author: jiang.xu@ust.hk
This work is supported by the Guangzhou-HKUST(GZ) Joint Funding Pro-
gram (No.2023A03J0013).

compared to the early-stage photonic accelerators that fo-
cused on improving the inference-phase performance on
a single application, such as convolutional neural network
(CNN), nowadays, photonic accelerators are expected to sup-
port general-purpose computation for various neural appli-
cations and adapt to process variation and quantization error
through on-chip training.
We conduct a comparison among recent representative

works about photonic computing, as shown in Table 1. They
can be categorized into two main sets: (i) the architecture
exploration and (ii) the device prototyping of standalone
photonic accelerators. [1, 2] focus on the arrangement of
photonic components inside a photonic core and do well in
minimizing the footprint and energy consumption to achieve
complex arithmetic in the optical domain. However, they
ignore the low-level details such as memory transaction
and scheduling overheads outside the photonic core. They
adopt formulaic estimation to roughly investigate the uncore
units, which is fast but results in optimism bias in evaluation.
[3, 4] propose architecture designs involving the interplay
between electronic and optical domains, but still modeling in
an abstract event granularity. [5, 6] introduce two valuable
tools to simulate DNN workloads on MZI meshes at the
algorithm level. However, the those mentioned above are
more likely functional design kits and do not yet lower to the
register-transfer level (RTL) or hardware level. Therefore,
they are not physically available for verification. [7–9] do
tape-out the chip and are ready to run in a real environment,
but they are highly customized for specific DNN workloads
and lack programmability.
In summary, we observe a gap between the system-level

design and device-level prototyping in the fields of photonic
accelerators. No available toolchain can provide a complete
solution spanning software and hardware stacks to enable
rapid end-to-end photonic accelerator design.

Table 1. Comparison: Progress in Photonic Computing

Related
Works

Training
Support

Multi-Task
Reconfigurable

Simulator
for DSE

Physically
Executable

[1, 2] ✔ ✔

[3, 4] ✔ ✔

[5, 6] ✔ ✔ ✔

[7–9] ✔ ❍ ✔

Ours ✔ ✔ ✔ ✔
∗Note: ❍ denotes it only supports specific DNN or no software stack.

To bridge the gaps mentioned above, we propose FIONA,
a full-stack infrastructure for optical neural accelerators.
FIONA comprises a photonic-electronic collaborative simu-
lation framework for multi-level design space exploration
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Figure 1. Overview of FIONA Toolchain.

and a transferable hardware prototyping template for rapid
physical verification. Specifically, the co-simulation frame-
work consists of a functional ISA-level simulator to verify
the correctness of the software stack, and an RTL cycle-
accurate simulator to profile the overall computing system
in detail. We also demonstrate LightRocket as a case study
of the FIONA toolchain. LightRocket is compatible with the
RISC-V ecosystem and can perform custom photonic instruc-
tions. We disclose the complete design-and-transfer work-
flow of developing a Turing-complete photonic accelerator
system that supports arbitrary DNN workloads and on-chip
photonic-electronic collaborative training.

To our best knowledge, FIONA is the first toolchain span-
ning both software and hardware stacks for photonic accel-
erator systems. It enables hierarchical simulation, painlessly
transfering the implementation to hardware, and end-to-end
rapid prototyping.
The remainder of this paper is organized as follows. Sec-

tion II illustrates the constitution of the FIONA toolchain.
Section III conducts a case study, LightRocket, to exemplify
how to transfer an architecture design from simulation to
physical prototyping. Section IV discusses the applicable
scope covered by FIONA. Section V concludes this work.

2 FIONA Toolchain
This section elucidates the proposed FIONA toolchain, in-
cluding hardware and software stacks. Note that the RTL
co-simulator and the functional ISA co-simulator (Co-Sim)

are the tools to simulate for two stacks, respectively. The
overview of FIONA is shown in Figure 1.

The design philosophy of FIONA is: one-time development,
multi-way deployment. (i) As for the hardware stack and its
RTL Co-Sim, the simulation and the prototyping share the
same design source files of photonic and electronic units. The
hardware prototyping template is organized in a modular
design manner. (ii) As for the software stack, the generated
machine codes can verify on its functional ISA Co-Sim or
run on physical prototypes in a bare-metal mode.

2.1 RTL Photonic-Electronic Co-Simulator
Under this simulator framework, we focus on the collab-
orative simulation of electronic and photonic units. Most
previous works focus on designing the photonic comput-
ing units in isolation without considering the interaction
with their electronic peripherals. However, when designing
accelerators, it is essential to pay attention to the timing
of the datapath, memory access pattern, and dataflow op-
timization to gain higher utilization and throughput. Such
kinds of optimizations are at the micro-architecture level and
are susceptible to datapath design such as pipeline stages
segmentation, which requires cycle-accurate simulation to
profile the metrics such as pipeline stalls.
The emergence of photonic computing devices brings

more significant challenges to the design and implemen-
tation of the architecture. When designing the datapath and
control logic, we need to consider more factors like compute
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Bytecode
PyFunc Reg

DPI-C Call import
interact

Sync & Perf

Look-up callable

One-time init

Call pre-compile func

Finish sync
& Perf count

Result write-back

Unified Sim in FIONA

Cross 
Bridge

import "DPI-C" function void array_handler(
        string filename, string funcname,
        input bit[W:0] array_in[A:0][B:0][C:0],
        output bit[W:0] array_out[P:0][Q:0]
);

initial begin
        bit[W:0] dac_val[A:0][B:0][C:0];
        bit[W:0] adc_val[P:0][Q:0];
        ......
        array_handler("mrr", "dotprod",
                dac_val, adc_val); 
        ......
end

typedef std::pair<std::string, std::string> PyFileFunc;
typedef std::vector<PyFileFunc> PyFileFuncVec;

const PyFileFuncVec pyfilefunc_reg {
    {"mzi", "mvmul"},  // matrix-vector multiplication
    {"mrr", "dotprod"}  // dot product
};

def mvmul(arr_in, bit_width):
        np_arr = Parser(arr_in, bit_width)        
        ...... # photonic model codes
        return arr_out

def dotprod(arr_in, bit_width):
        np_arr = Parser(arr_in, bit_width)
        ...... # photonic model codes
        return arr_out

Figure 2. Cross-Domain Simulation Workflow of Unified-Sim in FIONA.

latency, conversion across optical-electrical domains, etc.
Making photonic and electronic devices co-integrate better
requires more exploration at the micro-architecture level.
To address the lack of a co-simulation framework, we

propose a simulator that aims to perform the cycle-accurate
simulation at the RTL to profile the hardware-aware metrics
before transferring to a physical prototype.

The existing dominant way to describe electronic circuits
is Hardware Description Language (HDL). To facilitate the
system design and smooth DSE, we adopt Chisel [10] HDL to
implement parameterizable circuits and produce simulatable
and synthesizable code. Since we are projecting that FIONA
can serve as the toolchain to perform general photonic-
electronic collaborative computing that is extensible and
compatible with the current state-of-the-art ecosystem in
electronics, the RISC-V instruction set and the rocket-chip
framework becomes the best candidate to set off. The RISC-V
ISA reserves custom instruction slots, and the rocket chip has
a uniform interface, RoCC [11], for accelerators. We extend
a typical RISC-V ecosystem and propose our RTL photonic-
electronic co-simulator framework, which consists of the
following parts:

1. Photonic Accelerator Interface. Photonic cores at
the developing stage usually do not lithograph the
on-chip electronic circuits of controllers. Therefore,
the controller is integrated with the vector processor.

2. FIONA-V Vector Processor. FIONA-V is a ready-
to-run baseline photonic-electronic vector processor
designed for fast system-level prototyping. Since the
photonic chips show great capability in performing
vector operations, we implement a baseline vector
processor in the electrical domain and provide vec-
tor datatype supports. FIONA-V is customizable and
pluggable for new photonic instructions. The ISA and
architecture of FIONA-V are described in Section 3.2.2.

The detailed implementation and the instantiation of our
example design are elaborated in Section 3. The RTL cycle-
accurate simulation is supported by the commonly-used RTL

simulators, e.g., Verilator [12] and etc. The simulation will
produce architectural performance metrics like throughput,
latency, and execution cycles, as well as technology-aware
metrics such as power consumption.

2.1.1 Photonic Computing Units Modeling. The pho-
tonic models are described in Python. The input arguments
are the quantized data fetched from the cross bridge as shown
in the bottom center of Figure 2. We provide a FIONA built-
in utility class to automatically unpack the data into numpy
or torch supported forms. The models can be constructed
by either formula from optic theories or look-up table data
from experimental measurements. Commonly-used photonic
units are included in FIONA built-in libraries: Mach-Zehnder
Interferometer (MZI) Mesh, Micro-Ring Resonator (MRR)
Array, Optical Delay Line (ODL), etc. The mentioned units
are attached with the parametric GDSII generators using
the python package gdsfactory [13], which enables the chip
layout generation for prototyping and the simulation in a
multi-physics simulator such as Lumerical [14].

2.1.2 Cross-Domain Simulation and Synchronization.
The electronic and photonic models are simulated in the
corresponding domains, respectively. To bridge the data and
align the clock between Verilator and Python-Photonics,
FIONA’s Unified-Sim provides a cross-domain synchroniza-
tion framework, as shown in Figure 2. Unified-Sim provides
built-in Registry, Scheduler, and Monitor. Once an instruc-
tion that belongs to the photonic operations is triggered, the
cross bridge will evoke a handler through the direct pro-
gramming interface (DPI) C/C++. The handler passes the
name of the target Python-model function and the multi-
dimension data of input operands as arguments to Registry,
which will look up the callable objects from imported Python
bytecodes. Scheduler stalls the simulation in the electrical
domain, waits for the computational results from Python
models, and writes the quantized data back to the electrical
domain through DPI-C. Monitor counts the latency and the
energy consumption of DAC, ADC, and photonic models.
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To Plug DACards

Mother Board1

DACard1

Interfacing/Testing Board1

Photonic 
Core (chip)

· ADC: 12-bit, 0-4.096V, up to 1MS/s, x16 channels
· FPGA: XC7Z020CLG400-2, DDR3 1GB, EMMC 8GB
· GBE: giga-byte ethernet ports for data exchange
· LCD: touch screen for monitoring or interaction 
· MISC: miscellaneous for LEDs, buttons, headers, etc.
· SLOT (DAC): 12-bit, 0-23V @50mA, x320 channels
                         x10 slots, bus speed up to 40MHz

Specs of Electronic Modules

· ADC: 12-bit, 0-4.096V, up to 1MS/s, x16 channels
· FPGA: XC7Z020CLG400-2, DDR3 1GB, EMMC 8GB
· GBE: giga-byte ethernet ports for data exchange
· LCD: touch screen for monitoring or interaction 
· MISC: miscellaneous for LEDs, buttons, headers, etc.
· SLOT (DAC): 12-bit, 0-23V @50mA, x320 channels
                         x10 slots, bus speed up to 40MHz

Specs of Electronic Modules

Template Collections of Photonic Modules2 Experimental Setup using FIONA3

Figure 3. Transferable Prototyping Template: (1) schematics and PCB layouts of electronic modules, (2) chip layouts and
scanning electron microscope (SEM) images of photonic modules, (3) experimental setup using FIONA prototyping toolchain.

2.1.3 Practicality Discussion. There is skepticism about
the simulation speed and the necessity to run at the RTL.
Here we address the two questions from the aspects of the
software engineering and the manufacture, respectively:

1. Performance Consideration: We notice that the
Python-model functions are frequently called dur-
ing the simulation process. To ameliorate the perfor-
mance, the Python scripts are dedicatedly designed to
load and parse only at the initial stage. The interpreted
bytecodes are stored as C/C++ objects in the memory.
Therefore, the simulation speed of Python-Photonics
would be as fast as that of C/C++.

2. Simulation Granularity: Photonic computing units
are highly customized and their timing quality is deli-
cate. Therefore, we need to carefully inspect the func-
tionality and timing cycle-accurately. Furthermore, we
hope that through RTL simulation, architects will have
the opportunities to observe the micro-architecture
level interaction between photonic and electronic units.
This mechanism provides designers an approach to
integrate their photonic models seamlessly with the
electrical-domain RTL. Moreover, the framework also
produces synthesizable codes that can be implemented
on FPGAs for fast prototyping. RTL simulation is the
last step of the Pre-Silicon phase, which is indispens-
able for verifying the timing requirements and pro-
filing the system performance before fabrication. We
decouple the fast pre-RTL functional simulation to the
ISA Co-Sim of the software stack.

2.2 Transferable Prototyping Template
The prototyping template aims to provide reusable modules
for flexible migration from the schematic design and serves
as the key part of rapid prototyping. Transferable refers to
the capability of seamless migration from simulation envi-
ronment to physical prototypes thanks to the one-time de-
velopment, multi-way deployment philosophy. The overview
of electronic and photonic modules is shown in Figure 3.

2.2.1 ElectronicModules. To enable transferring theDSE
optimized solution in the simulator to the physical modifi-
cations of the system architecture, electronic modules are
intended to decouple and design for painless customization:

• Cross-module interfaces are maximally devised in a
pluggable way, except for the integrity-sensitive ones.
Changes in the inter-module connectivity of the sys-
tem architecture in the simulator correspond to hand-
ily unplug-and-reconnect the modules’ topology.

• Intra-module customization is also allowed. It just
requires unplug-and-replace the dedicated design by
following the protocols of cross-module interfaces.

The electronic module template encompasses four types
of printed circuit boards (PCBs): FPGA board, mother board,
digital-to-analogue (DA) card, interfacing/testing board.

• FPGA Board: The Verilog codes generated by Chisel
scripts are implemented on the FPGA. It is plugged
into the slot on Mother Board (center), and handles
all the electronic digital instructions and data.
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• Mother Board: It provides proper driven power, the
signal bus towards slots of DAC and ADC arrays, and
the IO pins for all the peripheral communications.

• DA Card: There are 10 DAC slots on Mother Board
(top). Each slot can hold one DA Card. Each card has
32 output channels in a form of FPC connectors (left).

• Interfacing/Testing Board: Wire bonding with the
photonic chip. It also serve DAC-ADC loopback test.

2.2.2 Photonic Modules. FIONA provides a set of built-
in parametric GDSII layout generators for general devices,
e.g., MZI and MRR. Adding a customized device generator is
also applicable. The photonic modules are building blocks to
construct the photonic units, which perform the photonic
instructions. For example, properly arrangedMZIs constitute
an MZI mesh that can perform matrix-vector multiplication.
More photonic instructions are listed in Section 3.

2.3 Software Stack and Functional ISA Simulator
Besides the hardware stack, FIONA also provides an easily
extendable programming software stack to boost developers’
productivity. Inspired by Gemmini [15], we develop a multi-
level software flow. (i) At the high level, the DNN models
described in PyTorch/Tensorflow/ONNX are converted to
the multi-level intermediate representation (MLIR), and our
custom LLVM backend will interpret the MLIR to LLVM IR
and later themachine binaries. (ii) At themiddle level, FIONA
provides the hand-tuned kernels of commonly-used photonic
units. By specifying the backend macros in C/C++ files, the
kernel will execute instructions on the corresponding FIONA
custom units. Table 2 lists the supported kernels and their
backends. (iii) At the low level, developers can also program
through C/C++ with inline assembly macros.

Table 2. Supported Hand-tuned Kernels and Backends
Kernel

(Math Operator)
Backend
(Target)

Kernel
(DNN Module)

Backend
(Target)

tiled_dotprod MRR nn_linear MRR / MZI
tiled_mvmul MRR / MZI nn_conv MRR / MZI
tiled_{eALU} {eALU}.V nn_batchnorm {eALU}.V
tiled_{NLU} {NLU}.V nn_padding SHUFFLE.V
tiled_{MISC} {MISC}.V nn_maxpooling MAX.V
tiled_dropout VMASK nn_mhattention MRR / MZI

residual_connect ADD.V nn_embedding RV
∗Note: RV denotes RISC-V standard ISA. The rest refers to Section 3.

3 Application and Case Study
In this section, we demonstrate LightRocket as a case study
of the FIONA toolchain to exemplify the full workflow of
designing a photonic accelerator system: (i) the ISA design
with functional software simulation, (ii) the cross-domain
RTL simulation and profiling, and (iii) the rapid prototyping
migration. We also discuss how to implement advanced DNN
operators and on-chip training.

3.1 Statement of Application Scenario
Suppose we come up with an idea to leverage the micro-ring
resonator (MRR) weight bank [16] structure to perform the
dot-product operations, as shown in Figure 4. In the follow-
ing subsections, we will give a step-by-step guide to how to
build up a photonic accelerator system from scratch using
the FIONA toolchain. This demo is entitled as LightRocket.

1 2 ...

Light Input Dot-Product Output

Modulate value of VS2

1 2 ...

Modulate value of VS1

Photodetector

Sign Check

Write to RD

Waveguide Heater

Figure 4. Schematic of Thermo-Optic MRR Weight Banks
to perform Dot Product. The modulation process at each
wavelength is equivalent tomultiplication. Thewide-spectral
photodetection approximates the accumulation.

3.2 ISA Design
Table 3 shows the FIONA baseline ISA of photonic-electronic
vector processing instructions.

3.2.1 Instruction. As the name suggests, this custom ISA
comprises vector-oriented photonic operations (pOps) and
electronic operations (eOps). Each vector instruction can be
implemented in either an electrical or optical domain, de-
pending on the functionality of the photonic core. In FIONA-
V, the function unit routing rule can be easily customized.
For example, the instructions in the non-linear unit (NLU)
category can also remap to photonic units, if any. The FIONA
baseline ISA summarizes the most common-used operations
while keeping them as neat and reduced as possible. Devel-
opers are free to extend their new custom instructions, either
pOps or eOps, onto the FIONA baseline ISA. We take MRR-
based DotProd instruction affiliated to the pALU category as
the example to demonstrate the LightRocket design process.

3.2.2 Register Set. Besides the vector registers, the FIONA
baseline ISA also defines a special group of register sets for
configuration (CFG). The STRIDE register, with the default
value of 1, only affects the address jumps of the memory
(MEM) load/store instructions. The VLEN register deter-
mines the effective execution length of all vector instructions.
Only the elements of which index lies between 0 and VLEN -1
will commit to compute. It tackles the remainder segments
when reaching the margin of a long vector. Alternatively,
the VMASK is used for discrete element selection by a bit
mask. The MAT is dedicated to MVMul instruction.

3.3 System Architecture
The system architecture design of LightRocket is shown in
Figure 5. The system consists of a rocket core to serve execu-
tion flow control, a photonic accelerator to accelerate vector
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Table 3. Overview of LightRocket Custom Instruction Set Architecture

Category Instruction
Operands

DescriptionFunct7 VS2/RS2 VS1/RS1 Funct3 [14:12] VD/RD OpCode
[31:25] [24:20] [19:15] xd xs1 xs2 [11:7] [6:0]

pALU
DotProd 41H V V 1 0 0 S

0x0B

MRR: RD = VS1[i] · VS2[i]
MVMul 42H U V 0 0 0 V MZI: VD[i] = MAT @ VS1[i]
Conv1D 43H V V 0 0 0 V FIR: VD[i] = VS1 ⊛ VS2

eALU

ADD.V 01H V V 0 0 0 V VD[i] = VS1[i] + VS2[i]
SUB.V 02H V V 0 0 0 V VD[i] = VS1[i] - VS2[i]
ADD.VS 03H S V 0 0 1 V VD[i] = VS1[i] + RS2
SUB.VS 04H S V 0 0 1 V VD[i] = VS1[i] - RS2
MUL.VS 05H S V 0 0 1 V VD[i] = VS1[i] * RS2
DIV.VS 06H S V 0 0 1 V VD[i] = VS1[i] / RS2

MISC
SHUFFLE.V 0AH V V 0 0 0 V VD[i] = VS1[VS2[i]]
MAX.V 0BH 0H V 1 0 0 S RD = Max(VS1[i])
MIN.V 1H V 1 0 0 S RD = Min(VS1[i])

NLU
PRELU.V

0FH
S V 0 0 1 V Leaky param: 𝛼 = RS2

TANH.V 1H V 0 0 0 V VD[i] = 𝑓 (VS1[i])
SIGMOID.V 2H V 0 0 0 V where 𝑓 is nonlinear function

MEM LOAD.V 10H U S 0 1 0 V VD[i] = Mem[RS1+i*STRIDE]
STORE.V 11H V S 0 1 0 U MEM[RS1+i*STRIDE] = VS2[i]

CFG SET.R 18H

U S 0 1 0 STRIDE Reg: STRIDE = RS1
U S 0 1 0 VLEN Reg: VLEN = RS1 (i = 0 to VLEN-1)
S S 0 1 1 VMASK Reg: VMASK[RS2] = RS1
S S 0 1 1 MAT Reg: MAT[RS2+i] = Mem[RS1+i]

∗Note: V, S, U denote Vector Register, Scalar Register, and Unused, respectively. STRIDE, VLEN, VMASK, MAT are the FIONA custom registers.

operations, external memory, and peripherals. More specifi-
cally, the photonic accelerator (PA) comprises the FIONA-V,
the photonic accelerator interface, and the photonic core.
We will illustrate PA in the following parts.

  Implemented on FPGA

On-Board Peripherals
(GbE, SDIO, UART ...)

D
A

C

L1I

Rocket-core

L1DL1I

Rocket-core

L1D

Photonic Core
 · mvmul   (MZI)
 · dotprod (MRR)
 · conv1d   (FIR)
 · other units ...p

A
LU

 C
o

n
tr

o
l 

U
n

it
 (

P
U

C
)

A
D

C

bus

FPGA-Attached DRAM

FPGA BoardFPGA Board Mother BoardMother Board Interfacing BoardInterfacing BoardDA CardDA Card Index Scalar Reg
0 32 bits <zero>
1 32 bits
... 32 bits
31 32 bits

Index Scalar Reg
0 32 bits <zero>
1 32 bits
... 32 bits
31 32 bits

Index Vector Reg
0 16 bits, <all zero>
1 16 bits, 32 elems
... 16 bits, 32 elems
31 16 bits, 32 elems

Index Vector Reg
0 16 bits, <all zero>
1 16 bits, 32 elems
... 16 bits, 32 elems
31 16 bits, 32 elems

LightRocket Registers

VLEN [31:0] x1 group
VMASK [31:0] x32 groups

MAT [15:0][31:0][31:0]

Photonic Accelerator

STRIDE [31:0] x1 group

Arithmetic

Activation

Misc

Load/Store V
ec

to
r 

R
eg

is
te

rs

FIONA-V

Figure 5. System Architecture and Board Assignment of
LightRocket. The red arrows denote the RoCC interface.

3.3.1 FIONA-V. The FIONA-V vector processor described
in Section 2.1 utilized the RISC-V [17] custom instruction
slots to support basic vector operations. It is a baseline design
mainly for fast prototyping and design space exploration.
FIONA-V has a standalone dual-banked vector register file
(VRF) accessible by electronic and photonic units. In the
electrical domain, FIONA-V contains an arithmetic unit to
execute addition, subtraction, multiplication, and division
in both vector-vector and vector-scalar fashion. We also im-
plemented a hardware activation function unit utilizing the
table lookup and interpolation methods. With these func-
tion units, FIONA-V can handle most computational tasks
covered in the DNN workloads.

FIONA-V is dedicated to providing vector computation
capability in both electrical and optical domains. Hence, it
also reserves datapath for photonic operations. The PUC in
Figure 5 is the default interface that handles the data interac-
tion between electrical and optical domains. It decodes the
photonic instructions, convert the vectors into a photonic-
compatible format, and feeds them to the photonic core.

Since FIONA-V is designed for accelerating computation,
it does not implement the complete RISC-V instruction set.
To support execution flow control and scalar operations, it
works with Rocket-core through the RoCC interface. They
share the frontend, integer register file, decoder, and the L1
data cache. FIONA-V has direct access to the L1 cache to
move the data between VRF and the L1 data cache indepen-
dently without interfering with the scalar core to diminish
the need for scalar load/store instructions for data transfer.

3.3.2 Photonic Accelerator Interface. For LightRocket,
the photonic accelerator interface in FIONA is instantiated
as the PUC, ADC, and DAC in Figure 5. The DAC/ADC
interfaces handle signal conversions. The PUC is customized
to program the DAC using the vector values to modulate the
on-chip photonic components and then program the ADC
to sample the outputs from the photonic core.

3.3.3 Photonic Core. The photonic core contains many
kinds of photonic computing units, for example, the MZI
mesh that supports matrix-vector multiplication, the MRR
weight bank that supports dot product, and the FIR array that
approximates 1D convolution. Developers can also design
and add new photonic computing units on the photonic core.
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Figure 6. LightRocket Hardware Setup using FIONA Toolchain.

3.4 Software Stack and Pre-RTL Simulation
We modify the Spike [18] simulator to support the baseline
FIONA ISA. Spike is an ISA-level simulator that can execute
RISC-V binary executables. We implement the behavior-level
functional models, decode logic in C++ and integrate them
with the Spike simulator. Following the one-time develop-
ment, multi-way deployment design philosophy of FIONA,
we provided a wrapped interface that the behavior model
developed for the RTL simulator in Python, C, or C++ can
be reused in the functional simulator.

3.4.1 Hand-tuned Kernel Design. The flow to wrap a
hand-tuned kernel follows: (i) add C/C++ macros as the in-
terface to assembly-form instructions, (ii) properly setup the
configuration (CFG) register set and handle vector memory
access for the preparation of the custom photonic instruc-
tions, and (iii) tile the arbitrary array and schedule to fit the
computation patterns on targeted photonic computing unit
backends. The hierarchical wrapping is shown in Figure 7.

ASM: DOTPROD

ASM: SET_VLEN

ASM: {MEM}.V

C: fit_dotprod

C: tiled_dotprod

C: tiled_mvm

C: tiled_matmul

C: nn_linear

C: nn_conv2d

C: nn_mhattention
(multi-head attention)

Figure 7. Progressively Wrap Kernels for Targeted Backend.

3.4.2 Functional ISA Simulation. The next step is to pro-
file the DNN workloads of interest at the instruction level.
A statistic tool is added to Spike for counting the call usage
of different instructions. We build several prevailing DNN
models using the hand-tuned kernels pointing to the custom
MRR-based DotProd backends. In Figure 8(a), the execution
cycle breakdown reveals the percentage of each kind of oper-
ation, which provides a clear metric for developers to further
optimize the holistic system.

Figure 8. Profile DNNWorkloads onMRR DotProd Backend.

We can also involve the cross-domain dataflow analysis if
the response models of photonic computing units are avail-
able. As mentioned in the previous section, photonic models
can be acquired from theoretical derivation or experimental
data. Once the models are ready, FIONA ISA Co-Sim can
give a fast simulation to estimate the quantity of difference
due to the change of backends. Figure 8(b) shows the dif-
ference and loss of test accuracy under various situations:
floating-point units and 5-bit quantized processing units at a
modern electronic computer, and photonic computing units
at a LightRocket. We can also locate and resolve the software
bugs before physically running at a real system. For example,
AlexNet almost produces wrong results at the LightRocket.
After printing the outputs of each layer in AlexNet, the rea-
son is found: AlexNet has 11×11 big convolution kernels,
and their summation results are so large that they trigger
the register overflow.

3.5 RTL Implementation Result
We implemented part of the LightRocket system on Xilinx
Zynq-7000 FPGA xc7z020clg400.We configured the FIONA-V
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to have two vector lanes. The electronic part of the proto-
typing system runs at 50MHz and can be entirely fit into the
selected FPGA. The implementation result on the FPGA and
the resource utilization breakdown is shown in Figure 9.

Figure 9. Implementation Result of LightRocket.

3.6 Transfer to Hardware Prototyping
The migration process contains: (i) implementing the design
on FPGA, (ii) instantiating and assigning modules to boards,
and (iii) generating photonic cores for tape-out. The hard-
ware setup is shown in Figure 6. From the board-assignment
perspective, let us retrospect the LightRocket architecture in
Figure 5. When transferring to the hardware prototyping,
PUC is implemented on FPGA together with the electronic
core and the L1 cache. The photonic accelerator interface is
instantiated as DAC and ADC data bus.

3.7 On-Chip Training Supports
Many previousworks adopt the optical-forward and electrical-
backward flow as the on-chip training scheme. In other
words, they compute the forward pass using the photonic
units and perform the backward propagation through the
electronic DSP. Although LightRocket is Turing-complete
and supports such a training flow, such gradient-based op-
timization is extremely expensive. Alternatively, we experi-
mentally implement the on-chip zeroth-order optimization
(ZOO) [19] for tuning the pre-trained models, as shown in
Figure 10. It only requires random sampling through the
forward pass to approximate a quasi-gradient. The drawback
is that it suffers higher variance and takes more steps to con-
verge. Therefore, applying ZOO at the on-chip fine-tuning
phase is more suitable than training from scratch.

Figure 10. Zeroth-Order Optimization On-chip Training.

4 Applicable Scope Covered by FIONA
FIONA toolchain provides a complete end-to-end solution
for photonic accelerator systems spanning both software
and hardware stacks. Since FIONA decouples software and
hardware stacks by functional virtualization, researchers
in the field of heterogeneous compilation can use software
stacks to investigate the relationship among ISA, simulator,
and compiler, without painfully mastering the hardware
details as a prerequisite. From the photonic device designers’
perspective, FIONA is an out-of-the-box toolkit to handle all
the high-level details.

Table 4. Specs of Various Thermo-Optic Devices

Device
Types

Footprint
(𝜇𝑚2)

Power
(𝑚𝑊 )

Switching
Voltage (𝑉 )

Switching
Time (𝜇𝑠)

AB MZI [20] ∼5000 12.7 ∼11.9 2.2
DCI MZI [21] 50×30 28 ∼2.8 2.16
PCN MZI [22] 150×30 0.16 ∼0.6 4.5
DC MRR [23] 51×17 21 ∼0.4 9
LN MRR [24] 400×400 14.9 ∼5 53

MI [25] 400×130 0.05 ∼6.5 780
∗ AB: adiabatic bend-based, DCI: direct carrier injection, PCN: photonic
crystal nanobeam, LN: lithium niobate, MI: Michelson interferometer.

The software stacks are highly extendable and are sup-
posed to support most scenarios of photonic-electronic col-
laborative simulation as long as new photonic models are cor-
rectly described and inserted. The hardware stacks, however,
require targeted customization and optimization according
to the interacting types of photonic devices. We conduct a
specification survey of thermo-optic (TO) devices in Table 4.
The upper bound of photonic TO devices is approximately
500kHz. Currently, the presented hardware template can
fulfill the requirements of tuning TO devices. As we step
further, electro-optic devices that work at the frequency of
tens of gigahertz are beyond the capability of the current-
version FIONA prototyping toolchain. The bottleneck lies in
the data transfer and signal conversion between electrical
and optical domains. We are expecting to use PCIe interfaces
with more advanced DAC/ADC components to build up the
next-generation FIONA hardware template.

5 Conclusion
We present the FIONA toolchain with LightRocket as a case
study demonstrating the entire workflow of designing a
Turing-complete photonic accelerator system. Compared
to state-of-the-art commercial electronic accelerators that
mainly adopt the systolic-array scheme, the photonic ac-
celerators fully exploit the analogue computing paradigm
and therefore are more promising but sophisticated. Any
math-meaningful optical phenomena can serve operators.
We anticipate that FIONA can bring up an ecosystem that all
the photonic operators can build and share in a unified stan-
dard to enable fast migration and exploration for futuristic
high-performance photonic computing.
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